Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Evaluation of i-Scan Virtual Chromoendoscopy and Traditional Chromoendoscopy for the Automated Diagnosis of Colonic Polyps

  • Conference paper
  • First Online:
Computer-Assisted and Robotic Endoscopy (CARE 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10170))

Included in the following conference series:

Abstract

Image enhancement technologies, such as chromoendoscopy and digital chromoendoscopy were reported to facilitate the detection and diagnosis of colonic polyps during endoscopic sessions. Here, we investigate the impact of enhanced imaging technologies on the classification accuracy of computer-aided diagnosis systems. Specifically, we determine if image representations obtained from different imaging modalities are significantly different and experimentation is performed to figure out the impact of utilizing differing imaging modalities in the training and validation sets. Finally, we examine if merging the images of similar imaging modalities for training the classification model can be effectively applied to improve the accuracy.

G. Wimmer, M. Gadermayr—Equal contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Basford, P., Longcroft, G., Bhandari, P.: Pwe-186 iscan in the evaluation of small colonic polyps: outcomes, learning curve from a large prospective series. Gut 61(2), A372 (2012)

    Google Scholar 

  2. Bouwens, M., de Ridder, R., Masclee, A., Driessen, A., Riedl, R., Winkens, B., Sanduleanu, S.: Optical diagnosis of colorectal polyps using high-definition i-scan: an educational experience. World J. Gastroenterol. 19(27), 4334–4343 (2013)

    Article  Google Scholar 

  3. Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: delving deep into convolutional nets. In: British Machine Vision Conference, BMVC 2014, Nottingham, UK, 1–5 September 2014

    Google Scholar 

  4. Easley, G., Labate, D., Lim, W.Q.: Sparse directional image representations using the discrete shearlet transform. Appl. Comput. Harmonic Anal. 25(1), 25–46 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: a library for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)

    MATH  Google Scholar 

  6. Gretton, A., Borgwardt, K., Rasch, M., Schölkopf, B., Smola, A.: A kernel two-sample test. JMLR 13, 723–773 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Gross, S., Palm, S., Tischendorf, J.J.W., Behrens, A., Trautwein, C., Aach, T.: Automated classification of colon polyps in endoscopic image data. In: SPIE Proceedings, vol. 8315, pp. 83150W–83150W-8 (2012)

    Google Scholar 

  8. Häfner, M., Uhl, A., Wimmer, G.: A novel shape feature descriptor for the classification of polyps in HD colonoscopy. In: Menze, B., Langs, G., Montillo, A., Kelm, M., Müller, H., Tu, Z. (eds.) MCV 2013. LNCS, vol. 8331, pp. 205–213. Springer, Heidelberg (2014). doi:10.1007/978-3-319-05530-5_20

    Chapter  Google Scholar 

  9. Häfner, M., Liedlgruber, M., Uhl, A., Vécsei, A., Wrba, F.: Color treatment in endoscopic image classification using multi-scale local color vector patterns. Med. Image Anal. 16(1), 75–86 (2012)

    Article  Google Scholar 

  10. Häfner, M., Liedlgruber, M., Uhl, A., Vécsei, A., Wrba, F.: Delaunay triangulation-based pit density estimation for the classification of polyps in high-magnification chromo-colonoscopy. Comput. Methods Programs Biomed. 107(3), 565–581 (2012)

    Article  Google Scholar 

  11. Häfner, M., Uhl, A., Wimmer, G.: Shape and size adapted local fractal dimension for the classification of polyps in HD colonoscopy. In: Proceedings of the IEEE International Conference on Image Processing 2014 (ICIP 2014), pp. 2299–2303, October 2014

    Google Scholar 

  12. Häfner, M., Uhl, A., Wimmer, G.: Shape and size adapted local fractal dimension for the classification of polyps in HD colonoscopy. In: Proceedings of the IEEE International Conference on Image Processing 2014 (ICIP 2014), October 2014

    Google Scholar 

  13. Häfner, M., Kwitt, R., Uhl, A., Gangl, A., Wrba, F., Vecsei, A.: Feature extraction from multi-directional multi-resolution image transformations for the classification of zoom-endoscopy images. Pattern Anal. Appl. 12(4), 407–413 (2009)

    Article  MathSciNet  Google Scholar 

  14. Häfner, M., Tamaki, T., Tanaka, S., Uhl, A., Wimmer, G., Yoshida, S.: Local fractal dimension based approaches for colonic polyp classification. Med. Image Anal. 26, 92–107 (2015)

    Article  Google Scholar 

  15. Hegenbart, S., Uhl, A., Vécsei, A.: Survey on computer aided decision support for diagnosis of celiac disease. Comput. Biol. Med. 65, 348–358 (2015)

    Article  Google Scholar 

  16. Hoffman, A., Kagel, C., Goetz, M., Tresch, A., Mudter, J., Biesterfeld, S., Galle, P., Neurath, M., Kiesslich, R.: Recognition and characterization of small colonic neoplasia with high-definition colonoscopy using i-scan is as precise as chromoendoscopy. Dig. Liver Dis. 42(1), 45–50 (2010)

    Article  Google Scholar 

  17. Kato, S., Fu, K.I., Sano, Y., Fujii, T., Saito, Y., Matsuda, T., Koba, I., Yoshida, S., Fujimori, T.: Magnifying colonoscopy as a non-biopsy technique for differential diagnosis of non-neoplastic and neoplastic lesions. World J. Gastroenterol. 12(9), 1416–1420 (2006)

    Article  Google Scholar 

  18. Kiesslich, R.: Advanced imaging in endoscopy. Eur. Gastroenterol. Hepatol. Rev. 5(1), 22–25 (2009)

    Google Scholar 

  19. Kingsbury, N.G.: The dual-tree complex wavelet transform: a new technique for shift invariance and directional filters. In: Proceedings of the IEEE Digital Signal Processing Workshop, DSP 1998, pp. 9–12. Bryce Canyon, USA, August 1998

    Google Scholar 

  20. Kodashima, S., Fujishiro, M.: Novel image-enhanced endoscopy with i-scan technology. World J. Gastroenterol. 16(9), 1043–1049 (2010)

    Article  Google Scholar 

  21. Kovesi, P.D.: Image features from phase congruency. Videre. J. Comput. Vision. Res. 1(3), 2–26 (1999)

    Google Scholar 

  22. Kudo, S.E., Hirota, S., Nakajima, T., Hosobe, S., Kusaka, H., Kobayashi, T., Himori, M., Yagyuu, A.: Colorectal tumours and pit pattern. J. Clin. Pathol. 47, 880–885 (1994)

    Article  Google Scholar 

  23. Kwitt, R., Uhl, A.: Modeling the marginal distributions of complex wavelet coefficient magnitudes for the classification of zoom-endoscopy images. In: Proceedings of the IEEE Computer Society Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA 2007), Rio de Janeiro, Brasil, pp. 1–8 (2007)

    Google Scholar 

  24. Manjunath, B.S., Ma, W.Y.: Texture features for browsing and retrieval of image data. IEEE Trans. Pattern Anal. Mach. Intell. 18(8), 837–842 (1996)

    Article  Google Scholar 

  25. Razavian, A.S., Azizpour, H., Sullivan, J., Carlsson, S.: Cnn features off-the-shelf: an astounding baseline for recognition. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2014, pp. 512–519 (2014)

    Google Scholar 

  26. Tamaki, T., Yoshimuta, J., Kawakami, M., Raytchev, B., Kaneda, K., Yoshida, S., Takemura, Y., Onji, K., Miyaki, R., Tanaka, S.: Computer-aided colorectal tumor classification in NBI endoscopy using local features. Med. Image Anal. 17(1), 78–100 (2013)

    Article  Google Scholar 

  27. Testoni, P., Notaristefano, C., Vailati, C., Leo, M.D., Viale, E.: High-definition colonoscopy with i-scan: better diagnosis for small polyps and flat adenomas. World J. Gastroenterol. 18(37), 5231–5239 (2012)

    Google Scholar 

  28. Varma, M., Garg, R.: Locally invariant fractal features for statistical texture classification. In: Proceedings of the IEEE International Conference on Computer Vision, Rio de Janeiro, Brazil, pp. 1–8, October 2007

    Google Scholar 

  29. Wimmer, G., Tamaki, T., Tischendorf, J., Häfner, M., Tanaka, S., Yoshida, S., Uhl, A.: Directional wavelet based features for colonic polyp classification. Med. Image Anal. 31, 16–36 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Wimmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wimmer, G., Gadermayr, M., Kwitt, R., Häfner, M., Merhof, D., Uhl, A. (2017). Evaluation of i-Scan Virtual Chromoendoscopy and Traditional Chromoendoscopy for the Automated Diagnosis of Colonic Polyps. In: Peters, T., et al. Computer-Assisted and Robotic Endoscopy. CARE 2016. Lecture Notes in Computer Science(), vol 10170. Springer, Cham. https://doi.org/10.1007/978-3-319-54057-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54057-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54056-6

  • Online ISBN: 978-3-319-54057-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics