Abstract
We prove that non-confluent (i.e., strongly nondeterministic) P systems with active membranes working in polynomial time are able to simulate polynomial-space nondeterministic Turing machines, and thus to solve all \({\mathbf{PSPACE }}\) problems. Unlike the confluent case, this result holds for shallow P systems. In particular, depth 1 (i.e., only one membrane nesting level and using elementary membrane division only) already suffices, and neither dissolution nor send-in communication rules are needed.
This work was partially supported by Fondo d’Ateneo (FA) 2015 of Università degli Studi di Milano-Bicocca: “Complessità computazionale e applicazioni crittografiche di modelli di calcolo bioispirati”.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alhazov, A., Freund, R.: On the efficiency of P systems with active membranes and two polarizations. In: Mauri, G., Păun, G., Pérez-Jiménez, M.J., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 146–160. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31837-8_8
Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Simulating elementary active membranes. In: Gheorghe, M., Rozenberg, G., Salomaa, A., Sosík, P., Zandron, C. (eds.) CMC 2014. LNCS, vol. 8961, pp. 284–299. Springer, Heidelberg (2014). doi:10.1007/978-3-319-14370-5_18
Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Membrane division, oracles, and the counting hierarchy. Fundam. Informaticae 138(1–2), 97–111 (2015)
Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Monodirectional P systems. In: Macìas-Ramos, L.F., Păun, G., Riscos-Núñez, A., Valencia-Cabrera, L. (eds.) Proceedings of the 13th Brainstorming Week on Membrane Computing, pp. 207–226. Fénix Editora (2015)
Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Tissue P systems can be simulated efficiently with counting oracles. In: Rozenberg, G., Salomaa, A., Sempere, J.M., Zandron, C. (eds.) CMC 2015. LNCS, vol. 9504, pp. 251–261. Springer, Heidelberg (2015). doi:10.1007/978-3-319-28475-0_17
Murphy, N., Woods, D.: The computational power of membrane systems under tight uniformity conditions. Nat. Comput. 10(1), 613–632 (2011)
Pan, L., Pérez-Jiménez, M.J.: Computational complexity of tissue-like P systems. J. Complex. 26(3), 296–315 (2010)
Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Boston (1993)
Păun, G.: P systems with active membranes: attacking NP-complete problems. J. Autom. Lang. Comb. 6(1), 75–90 (2001)
Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: Complexity classes in models of cellular computing with membranes. Nat. Comput. 2(3), 265–284 (2003)
Porreca, A.E., Mauri, G., Zandron, C.: Non-confluence in divisionless P systems with active membranes. Theor. Comput. Sci. 411(6), 878–887 (2010)
Păun, G., Pérez-Jiménez, M.J., Riscos Núñez, A.: Tissue P systems with cell division. Int. J. Comput. Commun. Control 3(3), 295–303 (2008)
Sosík, P.: The computational power of cell division in P systems: beating down parallel computers? Nat. Comput. 2(3), 287–298 (2003)
Sosík, P., Rodríguez-Patón, A.: Membrane computing and complexity theory: a characterization of PSPACE. J. Comput. Syst. Sci. 73(1), 137–152 (2007)
Zandron, C., Ferretti, C., Mauri, G.: Solving NP-complete problems using P systems with active membranes. In: Antoniou, I., Calude, C.S., Dinneen, M.J. (eds.) UMC’2K. DISCMATH, pp. 289–301. Springer, Heidelberg (2001). doi:10.1007/978-1-4471-0313-4_21
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C. (2017). Shallow Non-confluent P Systems. In: Leporati, A., Rozenberg, G., Salomaa, A., Zandron, C. (eds) Membrane Computing. CMC 2016. Lecture Notes in Computer Science(), vol 10105. Springer, Cham. https://doi.org/10.1007/978-3-319-54072-6_19
Download citation
DOI: https://doi.org/10.1007/978-3-319-54072-6_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-54071-9
Online ISBN: 978-3-319-54072-6
eBook Packages: Computer ScienceComputer Science (R0)