Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Realtime Hierarchical Clustering Based on Boundary and Surface Statistics

  • Conference paper
  • First Online:
Computer Vision – ACCV 2016 (ACCV 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10111))

Included in the following conference series:

  • 3322 Accesses

Abstract

Visual grouping is a key mechanism in human scene perception. There, it belongs to the subconscious, early processing and is key prerequisite for other high level tasks such as recognition. In this paper, we introduce an efficient, realtime capable algorithm which likewise agglomerates a valuable hierarchical clustering of a scene, while using purely local appearance statistics.

To speed up the processing, first we subdivide the image into meaningful, atomic segments using a fast Watershed transform. Starting from there, our rapid, agglomerative clustering algorithm prunes and maintains the connectivity graph between clusters to contain only such pairs, which directly touch in the image domain and are reciprocal nearest neighbors (RNN) wrt. a distance metric. The core of this approach is our novel cluster distance: it combines boundary and surface statistics both in terms of appearance as well as spatial linkage. This yields state-of-the-art performance, as we demonstrate in conclusive experiments conducted on BSDS500 and Pascal-Context datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://en.wikipedia.org/wiki/Nearest-neighbor_chain_algorithm.

  2. 2.

    This is similar to the well known earth mover’s distance (EMD) on histograms, which is in fact the discretized \(\mathcal {W}_1\) distance.

  3. 3.

    http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/mcg/.

References

  1. Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57, 137–154 (2004)

    Article  Google Scholar 

  2. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Computer Vision and Pattern Recognition (CVPR), pp. 886–893 (2005)

    Google Scholar 

  3. Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. Trans. Pattern Anal. Mach. Intell. 32, 1627–1645 (2010)

    Article  Google Scholar 

  4. Mottaghi, R., Chen, X., Liu, X., Cho, N.G., Lee, S.W., Fidler, S., Urtasun, R., et al.: The role of context for object detection and semantic segmentation in the wild. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 891–898. IEEE (2014)

    Google Scholar 

  5. Arbelaez, P., Pont-Tuset, J., Barron, J., Marques, F., Malik, J.: Multiscale combinatorial grouping. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 328–335. IEEE (2014)

    Google Scholar 

  6. Lowe, D.G.: Object recognition from local scale-invariant features. In: International Conference on Computer Vision (ICCV), pp. 1150–1157 (1999)

    Google Scholar 

  7. Sivic, J., Zisserman, A.: Video Google: a text retrieval approach to object matching in videos. In: International Conference on Computer Vision (ICCV), pp. 1470–1477 (2003)

    Google Scholar 

  8. Leibe, B., Leonardis, A., Schiele, B.: Combined object categorization and segmentation with an implicit shape model. In: Workshop on Statistical Learning in Computer Vision, ECCV, p. 7 (2004)

    Google Scholar 

  9. Bruce Goldstein, E.: Perceiving objects and scenes. In: Sensation and Perception, 8th edn., pp. 99–130. Wadsworth Cengage Learning, Belmont, USA (2009). ISBN-13: 978-0-495-60149-4

    Google Scholar 

  10. Wagemans, J., Elder, J.H., Kubovy, M., Palmer, S.E., Peterson, M.A., Singh, M., von der Heydt, R.: A century of gestalt psychology in visual perception I. perceptual grouping and figure-ground organization. Psychol. Bull. 138, 1172–1217 (2012)

    Article  Google Scholar 

  11. Wertheimer, M., Spillmann, L., Wertheimer, M.: On Perceived Motion and Figural Organization. MIT Press, Cambridge (2012)

    Google Scholar 

  12. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer Series in Statistics. Springer, Heidelberg (2009)

    Book  MATH  Google Scholar 

  13. Murtagh, F., Contreras, P.: Algorithms for hierarchical clustering: an overview. Interdisc. Rev. Data Min. Knowl. Disc. 2, 86–97 (2012)

    Article  Google Scholar 

  14. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24, 603–619 (2002)

    Article  Google Scholar 

  15. Cour, T., Benezit, F., Shi, J.: Spectral segmentation with multiscale graph decomposition. In: Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 1124–1131 (2005)

    Google Scholar 

  16. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59, 167–181 (2004)

    Article  Google Scholar 

  17. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34, 2274–2282 (2012)

    Article  Google Scholar 

  18. Van den Bergh, M., Boix, X., Roig, G., de Capitani, B., Van Gool, L.: SEEDS: superpixels extracted via energy-driven sampling. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7578, pp. 13–26. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33786-4_2

    Chapter  Google Scholar 

  19. Kovesi, P.: Image segmentation using SLIC superpixels and DBSCAN clustering (2013). http://www.peterkovesi.com/projects/segmentation

  20. Zhou, B.: Image segmentation using SLIC superpixels and affinity propagation clustering. Int. J. Sci. Res. 4(4), 1525–1529 (2015)

    Google Scholar 

  21. Peng, B., Zhang, L., Zhang, D.: A survey of graph theoretical approaches to image segmentation. Pattern Recogn. 46, 1020–1038 (2013)

    Article  Google Scholar 

  22. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 888–905 (2000)

    Article  Google Scholar 

  23. Vilaplana, V., Marques, F., Salembier, P.: Binary partition trees for object detection. IEEE Trans. Image Process. 17, 2201–2216 (2008)

    Article  MathSciNet  Google Scholar 

  24. Calderero, F., Marques, F.: Region merging techniques using information theory statistical measures. IEEE Trans. Image Process. 19, 1567–1586 (2010)

    Article  MathSciNet  Google Scholar 

  25. Alpert, S., Galun, M., Brandt, A., Basri, R.: Image segmentation by probabilistic bottom-up aggregation and cue integration. IEEE Trans. Pattern Anal. Mach. Intell. 34, 315–327 (2012)

    Article  Google Scholar 

  26. Arbelaez, P.: Boundary extraction in natural images using ultrametric contour maps. In: 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW 2006), p. 182 (2006)

    Google Scholar 

  27. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33, 898–916 (2011)

    Article  Google Scholar 

  28. Taylor, C.J.: Towards fast and accurate segmentation. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1916–1922 (2013)

    Google Scholar 

  29. Haris, K., Efstratiadis, S.N., Maglaveras, N., Katsaggelos, A.K.: Hybrid image segmentation using watersheds and fast region merging. IEEE Trans. Image Process. 7, 1684–1699 (1998)

    Article  Google Scholar 

  30. Marcotegui, B., Beucher, S.: Fast implementation of waterfall based on graphs. In: Ronse, C., Najman, L., Decencière, E. (eds.) Mathematical Morphology: 40 Years On. Computational Imaging and Vision, vol. 30, pp. 177–186. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  31. Jain, V., Turaga, S.C., Briggman, K., Helmstaedter, M.N., Denk, W., Seung, H.S.: Learning to agglomerate superpixel hierarchies. In: Shawe-Taylor, J., Zemel, R.S., Bartlett, P.L., Pereira, F., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 24, pp. 648–656. Curran Associates, Inc., New York (2011)

    Google Scholar 

  32. Roerdink, J.B., Meijster, A.: The watershed transform: definitions, algorithms and parallelization strategies. Fundamenta Informaticae 41, 187–228 (2001)

    MathSciNet  MATH  Google Scholar 

  33. Farid, H., Simoncelli, E.P.: Differentiation of discrete multidimensional signals. IEEE Trans. Image Process. 13, 496–508 (2004)

    Article  MathSciNet  Google Scholar 

  34. Xie, S., Tu, Z.: Holistically-nested edge detection. In: International Conference on Computer Vision (ICCV), pp. 1395–1403 (2015)

    Google Scholar 

  35. Li, Y., Paluri, M., Rehg, J.M., Dollár, P.: Unsupervised learning of edges. In: International Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  36. Bruynooghe, M.: Methodes nouvelles en classification automatique de donnees taxinomiqes nombreuses. Statistique et Anal. des Donnes 3, 24–42 (1977)

    Google Scholar 

  37. Chan, T.F., Golub, G.H., LeVeque, R.J.: Algorithms for computing the sample variance: analysis and recommendations. Am. Stat. 37, 242–247 (1983)

    MathSciNet  MATH  Google Scholar 

  38. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40, 99–121 (2000)

    Article  MATH  Google Scholar 

  39. Ward Jr., J.H.: Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–244 (1963)

    Article  MathSciNet  Google Scholar 

  40. Pont-Tuset, J., Marques, F.: Measures and meta-measures for the supervised evaluation of image segmentation. In: Computer Vision and Pattern Recognition (CVPR), pp. 2131–2138. IEEE (2013)

    Google Scholar 

  41. Robotics Foundation: ROS - Robot Operating System (2016). http://www.ros.org

  42. Ren, Z., Shakhnarovich, G.: Image segmentation by cascaded region agglomeration. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2011–2018. IEEE (2013)

    Google Scholar 

  43. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2010 (VOC2010) Results (2010). http://host.robots.ox.ac.uk/pascal/VOC/voc2010/workshop/index.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Alexander Klein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Klein, D.A., Schulz, D., Cremers, A.B. (2017). Realtime Hierarchical Clustering Based on Boundary and Surface Statistics. In: Lai, SH., Lepetit, V., Nishino, K., Sato, Y. (eds) Computer Vision – ACCV 2016. ACCV 2016. Lecture Notes in Computer Science(), vol 10111. Springer, Cham. https://doi.org/10.1007/978-3-319-54181-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54181-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54180-8

  • Online ISBN: 978-3-319-54181-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics