Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

SSP: Supervised Sparse Projections for Large-Scale Retrieval in High Dimensions

  • Conference paper
  • First Online:
Computer Vision – ACCV 2016 (ACCV 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10111))

Included in the following conference series:

  • 3127 Accesses

Abstract

As “big data” transforms the way we solve computer vision problems, the question of how we can efficiently leverage large labelled databases becomes increasingly important. High-dimensional features, such as the convolutional neural network activations that drive many leading recognition frameworks, pose particular challenges for efficient retrieval. We present a novel method for learning compact binary codes in which the conventional dense projection matrix is replaced with a discriminatively-trained sparse projection matrix. The proposed method achieves two to three times faster encoding than modern dense binary encoding methods, while obtaining comparable retrieval accuracy, on SUN RGB-D, AwA, and ImageNet datasets. The method is also more accurate than unsupervised high-dimensional binary encoding methods at similar encoding speeds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Personal communication.

References

  1. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large scale visual recognition challenge (2014). arXiv:1409.0575

  2. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft COCO: common objects in context. In: Proceedings of European Conference on Computer Vision (2014)

    Google Scholar 

  3. Song, S., Lichtenberg, S., Xiao, J.: SUN RGB-D: a RGB-D scene understanding benchmark suite. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  5. Kulis, B., Darrell, T.: Learning to hash with binary reconstructive embeddings. In: Advances in Neural Information Processing Systems (2009)

    Google Scholar 

  6. Norouzi, M., Fleet, D.J.: Minimal loss hashing for compact binary codes. In: Proceedings of International Conference in Machine Learning (2011)

    Google Scholar 

  7. Liu, W., Wang, J., Ji, R., Jiang, Y.G., Chang, S.F.: Supervised hashing with kernels. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2012)

    Google Scholar 

  8. Gong, Y., Lazebnik, S., Gordo, A., Perronnin, F.: Iterative quantization: a procrustean approach to learning binary codes for large-scale image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 35, 2916–2929 (2013)

    Article  Google Scholar 

  9. Ge, T., He, K., Sun, J.: Graph cuts for supervised binary coding. In: Proceedigs of European Conference on Computer Vision (2014)

    Google Scholar 

  10. Xia, Y., He, K., Kohli, P., Sun, J.: Sparse projections for high-dimensional binary codes. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  11. Cakir, F., Sclaroff, S.: Adaptive hashing for fast similarity search. In: Proceedings of IEEE International Conference on Computer Vision (2015)

    Google Scholar 

  12. Shen, F., Shen, C., Liu, W., Shen, H.T.: Supervised discrete hashing. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  13. Carreira, J., Caseiro, R., Batista, J., Sminchisescu, C.: Semantic segmentation with second-order pooling. In: Proceedings of European Conference on Computer Vision (2012)

    Google Scholar 

  14. Perronnin, F., Sánchez, J., Mensink, T.: Improving the Fisher kernel for large-scale image classification. In: Proceedings of European Conference on Computer Vision (2010)

    Google Scholar 

  15. Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: delving deep into convolutional nets. In: Proceedings of British Machine Vision Conference (2014)

    Google Scholar 

  16. Gong, Y., Kumar, S., Rowley, H.A., Lazebnik, S.: Learning binary codes for high-dimensional data using bilinear projections. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2013)

    Google Scholar 

  17. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hashing. In: Proceedings of International Conference on Very Large Data Bases (1999)

    Google Scholar 

  18. Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In: Proceedings of ACM Symposium on Theory of Computing (2002)

    Google Scholar 

  19. Kulis, B., Grauman, K.: Kernelized locality-sensitive hashing. IEEE Trans. Pattern Anal. Mach. Intell. 34, 1092–1104 (2012)

    Article  Google Scholar 

  20. Jiang, K., Que, Q., Kulis, B.: Revisiting kernelized locality-sensitive hashing for improved large-scale image retrieval. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  21. Jégou, H., Douze, M., Schmid, C., Pérez, P.: Aggregating local descriptors into a compact image representation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2010)

    Google Scholar 

  22. Yu, F.X., Kumar, S., Gong, Y., Chang, S.F.: Circulant binary embedding. In: Proceedings of International Conference in Machine Learning (2014)

    Google Scholar 

  23. Rastegari, M., Keskin, C., Kohli, P., Izadi, S.: Computationally bounded retrieval. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  24. Zhang, X., Yu, F.X., Guo, R., Kumar, S., Wang, S., Chang, S.F.: Fast orthogonal projection based on Kronecker product. In: Proceedings of IEEE International Conference on Computer Vision (2015)

    Google Scholar 

  25. Norouzi, M., Punjani, A., Fleet, D.J.: Fast search in Hamming space with multi-index hashing. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2012)

    Google Scholar 

  26. van den Berg, E., Friedlander, M.P.: Probing the pareto frontier for basis pursuit solutions. SIAM J. Sci. Comput. 31, 890–912 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dean, T., Ruzon, M.A., Segal, M., Shlens, J., Vijayanarasimhan, S., Yagnik, J.: Fast, accurate detection of 100,000 object classes on a single machine. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2013)

    Google Scholar 

  28. Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., Oliva, A.: Learning deep features for scene recognition using Places database. In: Advances in Neural Information Processing Systems (2014)

    Google Scholar 

  29. Xiao, J., Hays, J., Ehinger, K., Oliva, A., Torralba, A.: SUN database: large-scale scene recognition from abbey to zoo. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 3485–3492 (2010)

    Google Scholar 

  30. Lampert, C.H., Nickisch, H., Harmeling, S.: Learning to detect unseen object classes by between-class attribute transfer. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 951–958 (2009)

    Google Scholar 

  31. Farhadi, A., Endres, I., Hoiem, D., Forsyth, D.: Describing objects by their attributes. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1778–1785 (2009)

    Google Scholar 

  32. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014). arXiv:1409.1556

Download references

Acknowledgements

We thank Yan Xia for helpful discussion. This work was funded in part by the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick Tung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Tung, F., Little, J.J. (2017). SSP: Supervised Sparse Projections for Large-Scale Retrieval in High Dimensions. In: Lai, SH., Lepetit, V., Nishino, K., Sato, Y. (eds) Computer Vision – ACCV 2016. ACCV 2016. Lecture Notes in Computer Science(), vol 10111. Springer, Cham. https://doi.org/10.1007/978-3-319-54181-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54181-5_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54180-8

  • Online ISBN: 978-3-319-54181-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics