Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Distinguishing Posed and Spontaneous Smiles by Facial Dynamics

  • Conference paper
  • First Online:
Computer Vision – ACCV 2016 Workshops (ACCV 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10116))

Included in the following conference series:

  • 1882 Accesses

Abstract

Smile is one of the key elements in identifying emotions and present state of mind of an individual. In this work, we propose a cluster of approaches to classify posed and spontaneous smiles using deep convolutional neural network (CNN) face features, local phase quantization (LPQ), dense optical flow and histogram of gradient (HOG). Eulerian Video Magnification (EVM) is used for micro-expression smile amplification along with three normalization procedures for distinguishing posed and spontaneous smiles. Although the deep CNN face model is trained with large number of face images, HOG features outperforms this model for overall face smile classification task. Using EVM to amplify micro-expressions did not have a significant impact on classification accuracy, while the normalizing facial features improved classification accuracy. Unlike many manual or semi-automatic methodologies, our approach aims to automatically classify all smiles into either ‘spontaneous’ or ‘posed’ categories, by using support vector machines (SVM). Experimental results on large UvA-NEMO smile database show promising results as compared to other relevant methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zeng, Z., Pantic, M., Roisman, G.I., Huang, T.S.: A survey of affect recognition methods: audio, visual, and spontaneous expressions. PAMI 31, 39–58 (2009)

    Article  Google Scholar 

  2. Ekman, P., Rosenberg, E.: What the Face Reveals: Basic and Applied Studies of Spontaneous Expression Using the Facial Action Coding System, 2nd edn. Oxford University Press, New York (2005)

    Book  Google Scholar 

  3. Hoque, M., McDuff, D., Picard, R.: Exploring temporal patterns in classifying frustrated and delighted smiles. IEEE Trans. Affect. Comput. 3, 323–334 (2012)

    Article  Google Scholar 

  4. Ambadar, Z., Cohn, J., Reed, L.: All smiles are not created equal: morphology and timing of smiles perceived as amused, polite, and embarrassed/nervous. J. Nonverbal Behav. 33, 17–34 (2009)

    Article  Google Scholar 

  5. Ekman, P.: Telling Lies: Cues To Deceit in the Marketplace, Politics, and Marriage. WW. Norton & Company, New York (1992)

    Google Scholar 

  6. Hadwin, J., Baron-Cohen, S., Howlin, P., Hill, K.: Can we teach children with autism to understand emotion, belief, or pretense? Dev. Psychopathol. 8, 345–365 (1996)

    Article  Google Scholar 

  7. Xu, Q., Ching, S., Mandal, B., Li, L., Lim, J.H., Mukawa, M., Tan, C.: Socio glass: social interaction assistance with face recognition on google glass. J. Sci. Phone Apps Mob. Devices 2, 1–4 (2016)

    Article  Google Scholar 

  8. Mandal, B., Lim, R.Y., Dai, P., Sayed, M.R., Li, L., Lim, J.H.: Trends in machine and human face recognition. In: Kawulok, M., Celebi, M.E., Smolka, B. (eds.) Advances in Face Detection and Facial Image Analysis, pp. 145–187. Springer, Cham (2016). doi:10.1007/978-3-319-25958-1_7

    Google Scholar 

  9. Mandal, B., Wang, Z., Li, L., Kassim, A.A.: Performance evaluation of local descriptors and distance measures on benchmarks and first-person-view videos for face identification. Neurocomputing 184, 107–116 (2016)

    Article  Google Scholar 

  10. Ekman, P., Friesen, W.: The Facial Action Coding System: A Technique for the Measurement of Facial Movement. Consulting Psychologists Press Inc., San Francisco (1978)

    Google Scholar 

  11. Krumhuber, E.G., Manstead, A.S.: Can duchenne smiles be feigned? new evidence on felt and false smiles. Emotion 9, 807–820 (2009)

    Article  Google Scholar 

  12. Ekman, P., Hager, J., Friesen, W.: The symmetry of emotional and deliberate facial actions. Psychophysiology 18, 101–106 (1981)

    Article  Google Scholar 

  13. Dibeklioğlu, H., Salah, A.A., Gevers, T.: Are you really smiling at me? spontaneous versus posed enjoyment smiles. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 525–538. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33712-3_38

    Chapter  Google Scholar 

  14. Schmidt, K., Bhattacharya, S., Denlinger, R.: Comparison of deliberate and spontaneous facial movement in smiles and eyebrow raises. J. Nonverbal Behav. 33, 35–45 (2009)

    Article  Google Scholar 

  15. Cohn, J., Schmidt, K.: The timing of facial motion in posed and spontaneous smiles. Int. J. Wavelets, Multiresolut. Inf. Process. 2, 1–12 (2004)

    Article  MathSciNet  Google Scholar 

  16. Schmidt, K., Ambadar, Z., Cohn, J., Reed, I.: Movement differences between deliberate and spontaneous facial expressions: zygomaticus major action in smiling. J. Nonverbal Behav. 30, 37–52 (2006)

    Article  Google Scholar 

  17. Valstar, M.F., Pantic, M., Ambadar, Z., Cohn, J.F.: Spontaneous vs. posed facial behavior: automatic analysis of brow actions. In: Proceedings of ACM International Conference on Multimodal Interaction, pp. 162–170 (2006)

    Google Scholar 

  18. Tao, H., Huang, T.: Explanation-based facial motion tracking using a piecewise bézier volume deformation model. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 611–617 (1999)

    Google Scholar 

  19. Mandal, B., Ouarti, N.: Spontaneous vs. posed smiles - can we tell the difference? In: International Conference on Computer Vision and Image Processing (CVIP), vol. 460, pp. 261–271. Roorkee, India (2016)

    Google Scholar 

  20. Mandal, B., Chia, S.-C., Li, L., Chandrasekhar, V., Tan, C., Lim, J.-H.: A wearable face recognition system on google glass for assisting social interactions. In: Jawahar, C.V., Shan, S. (eds.) ACCV 2014. LNCS, vol. 9010, pp. 419–433. Springer, Cham (2015). doi:10.1007/978-3-319-16634-6_31

    Google Scholar 

  21. Mandal, B., Li, L., Chandrasekhar, V., Lim, J.H.: Whole space subclass discriminant analysis for face recognition. In: IEEE International Conference on Image Processing (ICIP), Quebec, Canada, pp. 329–333 (2015)

    Google Scholar 

  22. OpenCV: Open source computer vision (2014). http://opencv.org/

  23. Yu, X., Han, W., Li, L., Shi, J.Y., Wang, G.: An eye detection and localization system for natural human and robot interaction without face detection. In: Groß, R., Alboul, L., Melhuish, C., Witkowski, M., Prescott, T.J., Penders, J. (eds.) TAROS 2011. LNCS, vol. 6856, pp. 54–65. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23232-9_6

    Chapter  Google Scholar 

  24. Mandal, B., Zhikai, W., Li, L., Kassim, A.A.: Evaluation of descriptors and distance measures on benchmarks and first-person-view videos for face identification. In: Jawahar, C.V., Shan, S. (eds.) ACCV 2014. LNCS, vol. 9008, pp. 585–599. Springer, Cham (2015). doi:10.1007/978-3-319-16628-5_42

    Google Scholar 

  25. Tomasi, C., Kanade, T.: Detection and tracking of point features. Carnegie Mellon University Technical Report CMU-CS-91-132 (1991)

    Google Scholar 

  26. Mandal, B., Eng, H.L.: 3-parameter based eigenfeature regularization for human activity recognition. In: 35th IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 954–957 (2010)

    Google Scholar 

  27. FERET: Feret normalization (2005). http://www.cs.colostate.edu/evalfacerec/data/normalization.html

  28. Mandal, B., Jiang, X.D., Kot, A.: Verification of human faces using predicted eigenvalues. In: 19th International Conference on Pattern Recognition (ICPR), Tempa, Florida, USA, pp. 1–4 (2008)

    Google Scholar 

  29. Jiang, X.D., Mandal, B., Kot, A.: Face recognition based on discriminant evaluation in the whole space. In: IEEE 32nd International Conference on Acoustics, Speech and Signal Processing (ICASSP 2007), Honolulu, Hawaii, USA, pp. 245–248 (2007)

    Google Scholar 

  30. Wu, H.Y., Rubinstein, M., Shih, E., Guttag, J., Durand, F., Freeman, W.T.: Eulerian video magnification for revealing subtle changes in the world. ACM Trans. Graph. 31, 65 (2012)

    Article  Google Scholar 

  31. Wadhwa, N., Rubinstein, M., Durand, F., Freeman, W.T.: Phase-based video motion processing. ACM Trans. Graph. 32 (2013)

    Google Scholar 

  32. Li, X., Hong, X., Moilanen, A., Huang, X., Pfister, T., Zhao, G., Pietikäinen, M.: Reading hidden emotions: spontaneous micro-expression spotting and recognition. CoRR abs/1511.00423 (2015)

    Google Scholar 

  33. Ojansivu, V., Heikkilä, J.: Blur insensitive texture classification using local phase quantization. Image Signal Process. 5099, 236–243 (2008)

    Article  Google Scholar 

  34. Ahonen, T., Rahtu, E., Ojansivu, V., Heikkilä, J.: Recognition of blurred faces using local phase quantization. In: 19th International Conference on Pattern Recognition, pp. 1–4 (2008)

    Google Scholar 

  35. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 886–893 (2005)

    Google Scholar 

  36. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part based models. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1627–1645 (2009)

    Article  Google Scholar 

  37. Farnebäck, G.: Two-frame motion estimation based on polynomial expansion. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 363–370. Springer, Heidelberg (2003). doi:10.1007/3-540-45103-X_50

    Chapter  Google Scholar 

  38. Hu, G., Yang, Y., Yi, D., Kittler, J., Christmas, W.J., Li, S.Z., Hospedales, T.M.: When face recognition meets with deep learning: an evaluation of convolutional neural networks for face recognition. CoRR abs/1504.02351 (2015)

    Google Scholar 

  39. Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep face recognition. In: Proceedings of the British Machine Vision Conference (BMVC), vol. 41, no. 1–41, p. 12 (2015)

    Google Scholar 

  40. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)

    MATH  Google Scholar 

  41. Dibeklioglu, H., Salah, A., Gevers, T.: Recognition of genuine smiles. IEEE Trans. Multimedia 17, 279–294 (2015)

    Article  Google Scholar 

  42. Pfister, T., Li, X., Zhao, G., Pietikainen, M.: Differentiating spontaneous from posed facial expressions within a generic facial expression recognition framework. In: ICCV Workshop, pp. 868–875 (2011)

    Google Scholar 

  43. Dibeklioglu, H., Valenti, R., Salah, A., Gevers, T.: Eyes do not lie: spontaneous versus posed smiles. In: ACM Multimedia, pp. 703–706 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bappaditya Mandal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Mandal, B., Lee, D., Ouarti, N. (2017). Distinguishing Posed and Spontaneous Smiles by Facial Dynamics. In: Chen, CS., Lu, J., Ma, KK. (eds) Computer Vision – ACCV 2016 Workshops. ACCV 2016. Lecture Notes in Computer Science(), vol 10116. Springer, Cham. https://doi.org/10.1007/978-3-319-54407-6_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54407-6_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54406-9

  • Online ISBN: 978-3-319-54407-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics