Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Scheduling of Datacompression on Distributed Systems with Time- and Event-Triggered Messages

  • Conference paper
  • First Online:
Architecture of Computing Systems - ARCS 2017 (ARCS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10172))

Included in the following conference series:

Abstract

The compression of messages can improve schedulability by decreasing network latencies and contention at the cost of computational overhead for compression and decompression. Existing scheduling models do not consider compression as required for the deployment in distributed real-time systems. This paper presents an MILP model with decision variables, constraints and an objective function for selectively compressing messages as required for minimizing the system’s makespan, thereby optimizing the trade-off between communication time and computational overhead. We consider multi-hop communication in systems with multiple routers and computational nodes. The algorithm is evaluated using example scenarios and the results are compared to previous work without compression support.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.uni-siegen.de/cluster/hardware.html.

References

  1. Abella, J., Hardy, D., Puaut, I., Quiñones, E., Cazorla, F.J.: On the comparison of deterministic and probabilistic WCET estimation techniques. In: 2014 26th Euromicro Conference on Real-Time Systems, pp. 266–275. IEEE (2014)

    Google Scholar 

  2. Benini, L., Bruni, D., Macii, A., Macii, E.: Hardware-assisted data compression for energy minimization in systems with embedded processors. In: Proceedings of the conference on Design, automation and test in Europe, p. 449. IEEE Computer Society (2002)

    Google Scholar 

  3. Burke, E.K., Kendall, G. (eds.): Search Methodologies. Springer, New York (2005)

    MATH  Google Scholar 

  4. Cheng, T., Chen, Z., Li, C.L.: Parallel-machine scheduling with controllable processing times. IIE Trans. 28(2), 177–180 (1996)

    Article  Google Scholar 

  5. Das, R., Mishra, A.K., Nicopoulos, C., Park, D., Narayanan, V., Iyer, R., Yousif, M.S., Das, C.R.: Performance and power optimization through data compression in network-on-chip architectures. In: 2008 IEEE 14th International Symposium on High Performance Computer Architecture, pp. 215–225. IEEE (2008)

    Google Scholar 

  6. Huffman, D.A., et al.: A method for the construction of minimum-redundancy codes. Proc. IRE 40(9), 1098–1101 (1952)

    Article  MATH  Google Scholar 

  7. Murshed, A., Obermaisser, R., Ahmadian, H., Khalifeh, A.: Scheduling and allocation of time-triggered and event-triggered services for multi-core processors with networks-on-a-chip. In: 2015 IEEE 13th International Conference on Industrial Informatics (INDIN), pp. 1424–1431. IEEE (2015)

    Google Scholar 

  8. Nélis, V., Yomsi, P.M., Pinho, L.M., Bernat, G.: Another look at the pWCET estimation problem

    Google Scholar 

  9. Obermaisser, R.: Event-Triggered and Time-Triggered Control Paradigms, vol. 22. Springer, New York (2005)

    MATH  Google Scholar 

  10. Sinnen, O.: Task Scheduling for Parallel Systems, vol. 60. Wiley, Hoboken (2007)

    Book  Google Scholar 

  11. Witten, I.H., Neal, R.M., Cleary, J.G.: Arithmetic coding for data compression. Commun. ACM 30(6), 520–540 (1987)

    Article  Google Scholar 

  12. Zeng, H., Zheng, W., Di Natale, M., Ghosal, A., Giusto, P., Sangiovanni-Vincentelli, A.: Scheduling the flexray bus using optimization techniques. In: 46th ACM/IEEE Design Automation Conference, DAC 2009, pp. 874–877. IEEE (2009)

    Google Scholar 

  13. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory 23(3), 337–343 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zurawski, R.: Industrial Communication Technology Handbook. CRC Press, Boca Raton (2014)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the DFG project DAKODIS under the Grant Agreement No. 275601549 and the European project DREAMS under the Grant Agreement No. 610640.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damian Ludwig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ludwig, D., Obermaisser, R. (2017). Scheduling of Datacompression on Distributed Systems with Time- and Event-Triggered Messages. In: Knoop, J., Karl, W., Schulz, M., Inoue, K., Pionteck, T. (eds) Architecture of Computing Systems - ARCS 2017. ARCS 2017. Lecture Notes in Computer Science(), vol 10172. Springer, Cham. https://doi.org/10.1007/978-3-319-54999-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54999-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54998-9

  • Online ISBN: 978-3-319-54999-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics