Abstract
We identify a novel application of Genetic Programming to automatic synthesis of mathematical programming (MP) models for business processes. Given a set of examples of states of a business process, the proposed Genetic Constraint Synthesis (GenetiCS) method constructs well-formed constraints for an MP model. The form of synthesized constraints (e.g., linear or polynomial) can be chosen accordingly to the nature of the process and the desired type of MP problem. In experimental part, we verify syntactic and semantic fidelity of the synthesized models to the actual benchmark models of varying complexity. The obtained symbolic models of constraints can be combined with an objective function of choice, fed into an off-shelf MP solver, and optimized.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Technically, we use the MathNet.Symbolics library [20].
References
Aswal, A., Prasanna, G.N.S.: Estimating correlated constraint boundaries from timeseries data: the multi-dimensional German tank problem. In: 24th European Conference on Operational Research (2010). http://slideplayer.com/slide/7976536/. Accessed 09 May 2016
Beldiceanu, N., Simonis, H.: A model seeker: extracting global constraint models from positive examples. In: Milano, M. (ed.) 18th International Conference on Principles and Practice of Constraint Programming (CP 2012. LNCS, vol. 7514, pp. 141–157. Springer, Quebec City (2012)
Bellman, R.: Dynamic Programming. Dover Books on Computer Science. Dover Publications, New York (2013)
Bessiere, C., Coletta, R., Hebrard, E., Katsirelos, G., Lazaar, N., Narodytska, N., Quimper, C.G., Walsh, T.: Constraint acquisition via partial queries. In: International Joint Conference on Artificial Intelligence (2013)
Bessiere, C., Coletta, R., Koriche, F., O’Sullivan, B.: A SAT-based version space algorithm for acquiring constraint satisfaction problems. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 23–34. Springer, Heidelberg (2005). doi:10.1007/11564096_8
Flach, P.: Machine Learning: The Art and Science of Algorithms That Make Sense of Data. Cambridge University Press, New York (2012)
Gomory, R.E.: An algorithm for the mixed integer problem. Technical report, RM-2597-PR, 30 August 1960
Helmuth, T., Spector, L., Matheson, J.: Solving uncompromising problems with lexicase selection. IEEE Trans. Evol. Comput. 19(5), 630–643 (2015)
Hernández-Lobato, J.M., Gelbart, M.A., Adams, R.P., Hoffman, M.W., Ghahramani, Z.: A General Framework for Constrained Bayesian Optimization using Information-based Search. ArXiv e-prints, November 2015
Hothorn, T., Hornik, K., van de Wiel, M.A., Zeileis, A.: Package ’coin’: conditional inference procedures in a permutation test framework (2015). http://cran.r-project.org/web/packages/coin/coin.pdf
Jaccard, P.: The distribution of the flora in the alpine zone. New Phytol. 11(2), 37–50 (1912)
Kanji, G.: 100 Statistical Tests. SAGE Publications, New York (1999)
Kolb, S.: Learning constraints and optimization criteria. In: AAAI Workshops (2016)
Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992). http://mitpress.mit.edu/books/genetic-programming
Langdon, W.B., Soule, T., Poli, R., Foster, J.A.: The evolution of size and shape. In: Spector, L., Langdon, W.B., O’Reilly, U.M., Angeline, P.J. (eds.) Advances in Genetic Programming, vol. 3, pp. 163–190. MIT Press, Cambridge (1999). (Chap. 8) http://www.cs.bham.ac.uk/ wbl/aigp3/ch08.pdf
Montana, D.J.: Strongly typed genetic programming. Evol. Comput. 3(2), 199–230 (1995). http://vishnu.bbn.com/papers/stgp.pdf
Nordin, P., Banzhaf, W.: Complexity compression and evolution. In: Genetic Algorithms: Proceedings of the Sixth International Conference (ICGA 1995), pp. 310–317. Morgan Kaufmann, Pittsburgh, 15–19 July 1995
Pawlak, T.P., Krawiec, K.: Automatic synthesis of constraints from examples using mixed integer linear programming. Eur. J. Oper. Res. (2017). (in 2nd review)
Pawlak, T.P., Wieloch, B., Krawiec, K.: Review and comparative analysis of geometric semantic crossovers. Genet. Program. Evolvable Mach. 16(3), 351–386 (2015)
Rüegg, C.: Math.NET Symbolics. http://symbolics.mathdotnet.com/
Vanneschi, L., Castelli, M., Silva, S.: A survey of semantic methods in genetic programming. Genet. Program. Evolvable Mach. 15(2), 195–214 (2014). http://link.springer.com/article/10.1007/s10710-013-9210-0
Williams, H.: Model Building in Mathematical Programming. Wiley, New York (2013)
Acknowledgment
T. Pawlak was supported by the statutory activity of Poznan University of Technology, grant no. 09/91/DSMK/0606. K. Krawiec was supported by the National Science Centre, Poland, grant no. 2014/15/B/ST6/05205.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Pawlak, T.P., Krawiec, K. (2017). Synthesis of Mathematical Programming Constraints with Genetic Programming. In: McDermott, J., Castelli, M., Sekanina, L., Haasdijk, E., García-Sánchez, P. (eds) Genetic Programming. EuroGP 2017. Lecture Notes in Computer Science(), vol 10196. Springer, Cham. https://doi.org/10.1007/978-3-319-55696-3_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-55696-3_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-55695-6
Online ISBN: 978-3-319-55696-3
eBook Packages: Computer ScienceComputer Science (R0)