Abstract
We study nondeterministic communication complexity and related concepts (fooling sets, fractional covering number) of random functions \(f:X\times Y \rightarrow \{0,1\}\) where each value is chosen to beĀ 1 independently with probability \(p=p(n)\), \(n := {\left|{X}\right|}={\left|{Y}\right|}\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley, New York (2008)
Beasley, L.B., Klauck, H., Lee, T., Theis, D.O.: Communication complexity, linear optimization, and lower bounds for the nonnegative rank of matrices (dagstuhl seminar 13082). Dagstuhl Rep. 3(2), 127ā143 (2013)
BollobƔs, B.: Random Graphs. Cambridge Studies in Advanced Mathematics, vol. 73, 2nd edn. Cambridge University Press, Cambridge (2001)
Braun, G., Fiorini, S., Pokutta, S.: Average case polyhedral complexity of the maximum stable set problem. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2014, Barcelona, Spain, 4ā6 September 2014, pp. 515ā530 (2014). http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.515
Dani, V., Moore, C.: Independent sets in random graphs from the weighted second moment method. In: Goldberg, L.A., Jansen, K., Ravi, R., Rolim, J.D.P. (eds.) APPROX/RANDOM 2011. LNCS, vol. 6845, pp. 472ā482. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22935-0_40
Dawande, M., Keskinocak, P., Swaminathan, J.M., Tayur, S.: On bipartite and multipartite clique problems. J. Algorithms 41(2), 388ā403 (2001). http://dx.doi.org/10.1006/jagm.2001.1199
Dawande, M., Keskinocak, P., Tayur, S.: On the biclique problem in bipartite graphs. Carnegie Mellon University (1996). GSIA Working Paper
Dietzfelbinger, M., HromkoviÄ, J., Schnitger, G.: A comparison of two lower-bound methods for communication complexity. Theoret. Comput. Sci. 168(1), 39ā51 (1996). http://dx.doi.org/10.1016/S0304-3975(96)00062-X, 19th International Symposium on Mathematical Foundations of Computer Science, KoÅ”ice (1994)
Fiorini, S., Kaibel, V., Pashkovich, K., Theis, D.O.: Combinatorial bounds on nonnegative rank and extended formulations. Discrete Math. 313(1), 67ā83 (2013)
Fiorini, S., Massar, S., Pokutta, S., Tiwary, H.R., Wolf, R.: Linear vs. semidefinite extended formulations: exponential separation and strong lower bounds. In: STOC (2012)
Fiorini, S., Massar, S., Pokutta, S., Tiwary, H.R., Wolf, R.D.: Exponential lower bounds for polytopes in combinatorial optimization. J. ACM (JACM) 62(2), 17 (2015)
Froncek, D., Jerebic, J., Klavzar, S., KovĆ”r, P.: Strong isometric dimension, biclique coverings, and spernerās theorem. Comb. Probab. Comput. 16(2), 271ā275 (2007). http://dx.doi.org/10.1017/S0963548306007711
Goemans, M.X.: Smallest compact formulation for the permutahedron. Math. Program. 153(1), 5ā11 (2015)
Hajiabolhassan, H., Moazami, F.: Secure frameproof code through biclique cover. Discrete Math. Theor. Comput. Sci. 14(2), 261ā270 (2012). http://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/article/view/2131/4075
Hajiabolhassan, H., Moazami, F.: Some new bounds for cover-free families through biclique covers. Discrete Math. 312(24), 3626ā3635 (2012)
Izhakian, Z., Janson, S., Rhodes, J.: Superboolean rank and the size of the largest triangular submatrix of a random matrix. Proc. Am. Math. Soc. 143(1), 407ā418 (2015)
Janson, S., Åuczak, T., Rucinski, A.: Random Graphs. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley-Interscience, New York (2000)
Kaibel, V.: Extended formulations in combinatorial optimization. Optima - Math. Optim. Soc. Newsl. 85, 2ā7 (2011). www.mathopt.org/Optima-Issues/optima85.pdf
Karp, R.M., Sipser, M.: Maximum matchings in sparse random graphs. In: FOCS, pp. 364ā375 (1981)
Klauck, H., Lee, T., Theis, D.O., Thomas, R.R.: Limitations of convex programming: lower bounds on extended formulations and factorization ranks (dagstuhl seminar 15082). Dagstuhl Rep. 5(2), 109ā127 (2015)
Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, Cambridge (1997)
Lonardi, S., Szpankowski, W., Yang, Q.: Finding biclusters by random projections. In: Sahinalp, S.C., Muthukrishnan, S., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 102ā116. Springer, Heidelberg (2004). doi:10.1007/978-3-540-27801-6_8
Lonardi, S., Szpankowski, W., Yang, Q.: Finding biclusters by random projections. Theor. Comput. Sci. 368(3), 217ā230 (2006)
LovĆ”s, L., Saks, M.: Communication complexity and combinatorial lattice theory. J. Comput. Syst. Sci. 47, 322ā349 (1993)
Mitzenmacher, M., Upfal, E.: Probability and Computing ā Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, Cambridge (2006)
Park, G., Szpankowski, W.: Analysis of biclusters with applications to gene expression data. In: International Conference on Analysis of Algorithms. DMTCS Proc. AD, vol. 267, p. 274 (2005)
Roughgarden, T.: Communication complexity (for algorithm designers). arXiv preprint arXiv:1509.06257 (2015)
Schrijver, A.: Combinatorial Optimization. Polyhedra and Efficiency. Algorithms and Combinatorics, vol. 24. Springer, Berlin (2003)
Sun, X., Nobel, A.B.: On the size and recovery of submatrices of ones in a random binary matrix. J. Mach. Learn. Res 9, 2431ā2453 (2008)
Yannakakis, M.: Expressing combinatorial optimization problems by linear programs. J. Comput. Syst. Sci. 43(3), 441ā466 (1991). http://dx.doi.org/10.1016/0022-0000(91)90024-Y
Acknowledgments
The authors would like to thank the anonymous referees for their valuable comments.
Dirk Oliver Theis is supported by Estonian Research Council, ETAG (Eesti Teadusagentuur), through PUT Exploratory Grant #620. Mozhgan Pourmoradnasseri is recipient of the Estonian IT Academy Scholarship. This research is supported by the European Regional Fund through the Estonian Center of Excellence in Computer Science, EXCS.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2017 Springer International Publishing AG
About this paper
Cite this paper
Pourmoradnasseri, M., Theis, D.O. (2017). Nondeterministic Communication Complexity of Random Boolean Functions (Extended Abstract). In: Gopal, T., JƤger , G., Steila, S. (eds) Theory and Applications of Models of Computation. TAMC 2017. Lecture Notes in Computer Science(), vol 10185. Springer, Cham. https://doi.org/10.1007/978-3-319-55911-7_38
Download citation
DOI: https://doi.org/10.1007/978-3-319-55911-7_38
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-55910-0
Online ISBN: 978-3-319-55911-7
eBook Packages: Computer ScienceComputer Science (R0)