Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Mixed-Integer Programming Model for Profiling Disease Biomarkers from Gene Expression Studies

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2017)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10209))

Included in the following conference series:

  • 1857 Accesses

Abstract

Biomedical research has seen great advances in recent years, in great part due to the long-term aid of the ability to identify biological or genetic markers that uniquely match a given disease. Despite several successes stories, the reality is that most diseases still lack an effective way of treatment, and even diagnostic. While the emergence of –omic technologies, enabled the screening of a whole cell at the molecular level, the large quantities of data produced restricted the capability to extract valid outcomes.

In this paper, we propose an optimization model, based of mixed-integer linear programming, capable of identifying a combination of biomarkers for distinguishing between healthy and diseased samples. The model achieves this taking several individuals’ gene expression profiles, identifying the most relevant genes for differentiation and discovering the optimal combination of biomarkers that best explains the difference between both states. This model was validated on two different datasets through sampling analysis, achieving an out of sample accuracy up to 93%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Colburn, W.A., DeGruttola, V.G., DeMets, D.L., Downing, G.J., Hoth, D.F., Oates, J.A., Peck, C.C., Schooley, R.T., Spilker, B.A., Woodcock, J., Zeger, S.L.: Biomarkers definitions working group: biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 69(3), 89–95 (2001)

    Article  Google Scholar 

  2. LaBaer, J.: So, you want to look for biomarkers. J. Proteome Res. 4(4), 1053–1059 (2005)

    Article  Google Scholar 

  3. Manolio, T.: Novel risk markers and clinical practice. New Engl. J. Med. 349(17), 1587–1589 (2003)

    Article  Google Scholar 

  4. Lee, Y.H., Wong, D.T.: Saliva: an emerging biofluid for early detection of diseases. Am. J. Dent. 22(4), 241–248 (2009)

    Google Scholar 

  5. Schrohl, A.S., Würtz, S., Kohn, E., Banks, R.E., Nielsen, H.J., Sweep, F.C.G.J., Brünner, N.: Banking of biological fluids for studies of disease-associated protein biomarkers. Mol. Cell. Proteomics MCP 7(10), 2061–2066 (2008)

    Article  Google Scholar 

  6. Sidransky, D.: Nucleic acid-based methods for the detection of cancer. Science 278(5340), 1054–1059 (1997). New York

    Article  Google Scholar 

  7. Wang, Q., Gao, P., Wang, X., Duan, Y.: Investigation and identification of potential biomarkers in human saliva for the early diagnosis of oral squamous cell carcinoma. Clin. Chim. Acta Int. J. Clin. Chem. 427, 79–85 (2014)

    Article  Google Scholar 

  8. Baliban, R.C., Sakellari, D., Li, Z., Guzman, Y.A., Garcia, B.A., Floudas, C.A.: Discovery of biomarker combinations that predict periodontal health or disease with high accuracy from GCF samples based on high-throughput proteomic analysis and mixed-integer linear optimization. J. Clin. Periodontol. 40(2), 131–139 (2013)

    Article  Google Scholar 

  9. Puthiyedth, N., Riveros, C., Berretta, R., Moscato, P.: A new combinatorial optimization approach for integrated feature selection using different datasets: a prostate cancer transcriptomic study. PloS one 10(6), e0127702 (2015)

    Article  Google Scholar 

  10. Li, W.Q., Hu, N., Burton, V.H., Yang, H.H., Su, H., Conway, C.M., Wang, L., Wang, C., Ding, T., Xu, Y., Giffen, C., Abnet, C.C., Goldstein, A.M., Hewitt, S.M., Taylor, P.R.: PLCE1 mRNA and protein expression and survival of patients with esophageal squamous cell carcinoma and gastric adenocarcinoma. Cancer Epidemiol. Biomarkers Prev. Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 23(8), 1579–1588 (2014)

    Article  Google Scholar 

  11. Su, H., Hu, N., Yang, H.H., Wang, C., Takikita, M., Wang, Q.H., Giffen, C., Clifford, R., Hewitt, S.M., Shou, J.Z., Goldstein, A.M., Lee, M.P., Taylor, P.R.: Global gene expression profiling and validation in esophageal squamous cell carcinoma and its association with clinical phenotypes. Clin. Cancer Res. Official J. Am. Assoc. Cancer Res. 17(9), 2955–2966 (2011)

    Article  Google Scholar 

  12. Maire, V., Némati, F., Richardson, M., Vincent-Salomon, A., Tesson, B., Rigaill, G., Gravier, E., Marty-Prouvost, B., De Koning, L., Lang, G., Gentien, D., Dumont, A., Barillot, E., Marangoni, E., Decaudin, D., Roman-Roman, S., Pierré, A., Cruzalegui, F., Depil, S., Tucker, G.C., Dubois, T.: Polo-like kinase 1: a potential therapeutic option in combination with conventional chemotherapy for the management of patients with triple-negative breast cancer. Cancer Res. 73(2), 813–823 (2013)

    Article  Google Scholar 

  13. Maire, V., Baldeyron, C., Richardson, M., Tesson, B., Vincent-Salomon, A., Gravier, E., Marty-Prouvost, B., De Koning, L., Rigaill, G., Dumont, A., Gentien, D., Barillot, E., Roman-Roman, S., Depil, S., Cruzalegui, F., Pierré, A., Tucker, G.C., Dubois, T.: TTK/hMPS1 is an attractive therapeutic target for triple-negative breast cancer. PloS one 8(5), e63712 (2013)

    Article  Google Scholar 

  14. Maubant, S., Tesson, B., Maire, V., Ye, M., Rigaill, G., Gentien, D., Cruzalegui, F., Tucker, G.C., Roman-Roman, S., Dubois, T.: Transcriptome analysis of Wnt3a-treated triple-negative breast cancer cells. PloS one 10(4), e0122333 (2015)

    Article  Google Scholar 

  15. Falcon, R.G., Sarkar, D.: Category: Category Analysis. R package version 2.34.2

    Google Scholar 

  16. Falcon, S., Gentleman, R.: Using GOstats to test gene lists for GO term association. Bioinformatics 23(2), 257–258 (2007). Oxford, England

    Article  Google Scholar 

  17. Gautier, L., Cope, L., Bolstad, B.M., Irizarry, R.A.: affy-analysis of Affymetrix Genechip data at the probe level. Bioinformatics 20(3), 307–315 (2004). Oxford, England

    Article  Google Scholar 

  18. Gentleman, R., Carey, V., Huber, W., Hahne, F.: Genefilter: methods for filtering genes from microarray experiments. R package version 1.50.0

    Google Scholar 

  19. Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., Smyth, G.K.: limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43(7), 47 (2015)

    Article  Google Scholar 

  20. Carlson, M.: hgu133a.db: Affymetrix Human Genome U133 Set annotation data (chip hgu133a). R package version 3.1.3

    Google Scholar 

  21. Carlson, M.: hgu133plus2.db: Affymetrix Human Genome U133 Plus 2.0 Array annotation data (chip hgu133plus2). R package version 3.1.3

    Google Scholar 

  22. Gentleman, R.C., Carey, V.J., Bates, D.M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., Hornik, K., Hothorn, T., Huber, W., Iacus, S., Irizarry, R., Leisch, F., Li, C., Maechler, M., Rossini, A.J., Sawitzki, G., Smith, C., Smyth, G., Tierney, L., Yang, J.Y.H., Zhang, J.: Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5(10), R80 (2004)

    Article  Google Scholar 

  23. Carlson, M.: hgu133b.db: Affymetrix Human Genome U133 Set annotation data (chip hgu133b). R package version 3.1.3

    Google Scholar 

  24. Davis, S., Meltzer, P.S.: GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics 23(14), 1846–1847 (2007). Oxford, England

    Article  Google Scholar 

  25. Sun, M., Xiong, M.: A mathematical programming approach for gene selection and tissue classification. Bioinformatics 19(10), 1243–1251 (2003). Oxford, England

    Article  Google Scholar 

  26. Zou, M., Zhang, P.J., Wen, X.Y., Chen, L., Tian, Y.P., Wang, Y.: A novel mixed integer programming for multi-biomarker panel identification by distinguishing malignant from benign colorectal tumors. Methods 83, 3–17 (2015). San Diego, California

    Article  Google Scholar 

Download references

Acknowledgments

This work is co-funded by the North Portugal Regional Operational Programme, under the “Portugal 2020”, through the European Regional Development Fund (ERDF), within project SISBI- Ref\(^{\mathrm {a}}\) NORTE-01-0247-FEDER-003381. This study was also supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684) and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte. Joel P. Arrais is funded by CISUC - Center for Informatics and Systems of the University of Coimbra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André M. Santiago .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Santiago, A.M., Rocha, M., Dourado, A., Arrais, J.P. (2017). Mixed-Integer Programming Model for Profiling Disease Biomarkers from Gene Expression Studies. In: Rojas, I., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2017. Lecture Notes in Computer Science(), vol 10209. Springer, Cham. https://doi.org/10.1007/978-3-319-56154-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56154-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56153-0

  • Online ISBN: 978-3-319-56154-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics