Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Tool Supporting Decision Making Process in Area of Job-Shop Scheduling

  • Conference paper
  • First Online:
Recent Advances in Information Systems and Technologies (WorldCIST 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 571))

Included in the following conference series:

Abstract

Today most manufacturing companies from machine building industry are operating in single unit or short-run production which is very complex in terms of decision making processes in production planning area. The difficulty in decision making in the area of scheduling is caused by the necessity of analysing multiple factors and evaluating various scheduling options due to numerous criteria. The article presents the author’s tool supporting decision making in the area of job-shop scheduling. The tool introduced in the article enables scheduling based on author’s priority rule allowing maximum usage of the most loaded resource (known as critical resource), which determines efficiency of the production system. The tool has been designed and verified as a part of PhD dissertation research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang, R., Song, S., Wu, C.: A hybrid artificial bee colony algorithm for the job shop scheduling problem. Int. J. Prod. Econ. 141, 167–178 (2013)

    Article  Google Scholar 

  2. Lenstra, J.K., Kan, A.H.G.R., Brucker, P.: Complexity of machine scheduling problems. Ann. Discret. Math. 1, 343–362 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Deepu, P.: Robust Schedules and Disruption Management for Job Shop. Dissertation of Montana State University, Bozeman, Montana (2008)

    Google Scholar 

  4. Asadzadeh, L., Zamanifar, K.: An agent-based parallel approach for the job shop scheduling problem with genetic algorithms. Math. Comput. Model. 52, 1957–1965 (2010)

    Article  MATH  Google Scholar 

  5. Hamrol, A.: Strategies and practices of efficient operation. LEAN SIX SIGMA and other. PWN, Warsaw (2015). (in Polish)

    Google Scholar 

  6. Knosala, R.: Computer Aided Business Management. Polish Economics Publishers, Warsaw (2007). (in Polish)

    Google Scholar 

  7. Zawadzki, P., Żywicki, K.: Smart product design and production control for effective mass customization in the Industry 4.0 concept. Manage. Prod. Eng. Rev. 7(3), 105–112 (2016)

    Google Scholar 

  8. Ulewicz, R., Jelonek, D., Mazur, M.: Implementation of logic flow in planning and production control. Manage. Prod. Eng. Rev. 7(1), 89–94 (2016). doi:10.1515/mper-2016-0010

    Google Scholar 

  9. Hadidi, L.A., Al-Turki, U.M., Rahim, A.: Integrated models in production planning and scheduling, maintenance and quality: a review. Int. J. Ind. Syst. Eng. 10(1), 21–50 (2012)

    Google Scholar 

  10. Geyik, F., Cedimoglu, I.H.: The Strategies and parameters of tabu search for job-shop scheduling. J. Intell. Manuf. 15, 439–448 (2004)

    Article  Google Scholar 

  11. Chen, J.C., Wu, C.C., Chen, C.W., Chen, K.H.: Flexible job shop scheduling with parallel machines using genetic algorithm and grouping genetic algorithm. Expert Syst. Appl. 39, 10016–10021 (2012)

    Article  Google Scholar 

  12. Surekha, P., Sumathi, S.: Solution to the job shop scheduling problem using hybrid genetic swarm optimization based on (λ,1)-interval fuzzy processing time. Eur. J. Sci. Res. 64(2), 168–188 (2011)

    Google Scholar 

  13. Arisha, A., Young, P., El Baradie, M.: Job shop scheduling problem: an overview. In: International Conference for Flexible Automation and Intelligent Manufacturing FAIM 01, Dublin, Ireland, pp. 682–693 (2001)

    Google Scholar 

  14. Calis, B., Bulkan, S.: A research survey: review of AI solution strategies of job shop scheduling problem. J. Intell. Manuf. 26(5), 961–973 (2013)

    Article  Google Scholar 

  15. Lee, C.Y., Piramuthu, S., Tsai, Y.K.: Job shop scheduling with genetic algorithm and machine learning. Int. J. Prod. Res. 35(4), 1171–1191 (1998)

    Article  MATH  Google Scholar 

  16. Pinson, E.: The job shop scheduling problem: concise survey and some recent developments. In: Chretienne, P., Coffman Jr., E.G., Lenstra, J.K., Lim, Z. (eds.) Scheduling Theory and its applications. Wiley, New York (1995)

    Google Scholar 

  17. Gere Jr., W.S.: Heuristics in Job-Shop Scheduling. Manage. Sci. 13, 167–190 (1966)

    Article  Google Scholar 

  18. Giffler, B., Thompson, G.L.: Algorithms for solving production scheduling problems. Oper. Res. 8(4), 487–503 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rowe, A.J., Jackson, J.R.: Research problems in production routing and scheduling. J. Ind. Eng. 7, 116–121 (1956)

    Google Scholar 

  20. Smith, W.E.: Various optimizers for single stage production. Naval Res. Log. Q. 3, 59–66 (1956)

    Article  MathSciNet  Google Scholar 

  21. Panwalker, S.S., Iskander, W.: A survey of scheduling rules. Oper. Res. 25(1), 45–61 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wróblewski, K.J.: Basics of Flow Control Production. WNT, Warsaw (1993). (in Polish)

    Google Scholar 

  23. Banaszak, Z., Jampoliński, L.: Computer-Aided Modeling of Flexible Manufacturing Systems. WNT, Warszawa (1991). (in Polish)

    Google Scholar 

  24. Conway, W.R., Maxwell, L.W., Miller, L.W.: Theory of Scheduling. Addison-Wesley Publishing Company, London (1967)

    MATH  Google Scholar 

  25. Kuhpfahl, J.: Job Shop Scheduling with Consideration of Due Dates. Springer, New York (2015)

    Google Scholar 

  26. Ross, E.H.P., Corne, D.: Evalutionary scheduling: a review. Genet. Program. Evolvable Mach. 6, 191–220 (2005)

    Article  Google Scholar 

  27. Senger, Z.: Production Flow Control. WPP, Poznań (1997). (in Polish)

    Google Scholar 

  28. Burgy, R.: A neighborhood for complex job shop scheduling problems with regular objective. Les Cahiers du GERAD (2016)

    Google Scholar 

  29. French, P.: Sequencing and Scheduling: An Introduction to the Mathematics of the Job Shop. Wiley, New York (1982)

    MATH  Google Scholar 

  30. Pawlak, M.: Evolutionary Algorithm as a Tool for Production Scheduling. PWN, Warszawa (1999). (in Polish)

    Google Scholar 

  31. Skołud B.: Operational Management. Production in Small and Medium-Sized Enterprises. WPŚ, Gliwice (2006). (in Polish)

    Google Scholar 

  32. Arrais-Castro, A., Varela, M., Putnik, G., Ribeiro, R., Dargam, F.: Collaborative negotiation platform using a dynamic multi-criteria decision model. Int. J. Decis. Support Syst. Technol. 7(1), 1–14 (2015). doi:10.4018/ijdsst.2015010101

    Article  Google Scholar 

  33. Diering, M., Hamrol, A., Kujawińska, A.: Measurement system analysis Combined with Shewhart’s Approach. In: Key Engineering Materials, vol. 637, pp 7–11. ©Trans Tech Publications, Switzerland (2015). doi:10.4028/www.scientific.net/KEM.637.7

  34. Kluczek, A.: Application of multi-criteria approach for sustainability assessment of manufacturing processes. Manage. Prod. Eng. Rev. 7(3), 62–78 (2016). doi:10.1515/mper-2016-0026

    Google Scholar 

  35. Kłos, S.: Implementation of the AHP method in ERP-based decision support systems for a new product development. In: Dregvaite, G., Damasevicius, R. (eds.) ICIST 2015. CCIS, vol. 538, pp. 199–207. Springer, Cham (2015). doi:10.1007/978-3-319-24770-0_18

    Google Scholar 

  36. Kłos, S., Patalas-Maliszewska, J.: Throughput analysis of automatic production lines based on simulation methods. In: Jackowski, K., Burduk, R., Walkowiak, K., Woźniak, M., Yin, H. (eds.) IDEAL 2015. LNCS, vol. 9375, pp. 181–190. Springer, Cham (2015). doi:10.1007/978-3-319-24834-9_22

    Chapter  Google Scholar 

  37. Kolinski, A., Śliwczyński B.: IT support of production efficiency analysis in ecological aspect. In: Golinska P., Kawa A. (eds.) Technology Management for Sustainable Production and Logistics, pp. 205–219. Springer Verlag, Berlin (2015). doi:10.1007/978-3-642-33935-6_11

  38. Kujawińska, A., Rogalewicz, M., Diering, M.: Application of expectation maximization method for purchase decision-making support in welding branch. Manage. Prod. Eng. Rev. 7(2), 29–33 (2016). doi:10.1515/mper-2016-0014

    Google Scholar 

  39. Kujawinska, A., Rogalewicz, M., Diering, M., Piłacińska, M., Hamrol, A., Kochański, A.: Assessment of ductile iron casting process with the use of the DRSA method. J. Min. Metall. B Metall. 52(1), 25–34 (2016). doi:10.2298/JMMB150806023K

    Article  Google Scholar 

  40. Starzyńska, B., Hamrol, A.: Excellence toolbox: Decision support system for quality tools and techniques selection and application. Total Qual. Manage. Bus. Excell. 24(5–6), 577–595 (2013). doi:10.1080/14783363.2012.669557

    Article  Google Scholar 

  41. Pandilov, Z., Milecki, A., Nowak, A., Górski, F., Grajewski, D., Ciglar, D., Mulc, T., Klaić, M.: Virtual modelling and simulation of a CNC machine feed drive system. Trans. FAMENA 39(4), 37–54 (2015)

    Google Scholar 

  42. Pinedo, M.: Scheduling: Theory, Algorithms, and Systems. Springer, New York (2012)

    Book  MATH  Google Scholar 

  43. Andresen, M., Bräsel, H., Engelhardt, F., Werner, F.: LiSA-a Library of Scheduling Algorithms: Handbook for Version 3.0: Univ. Fak. für Mathematik (2010)

    Google Scholar 

  44. Pinedo, M.: Operations Scheduling with Applications in Manufacturing and Services. McGraw-Hill, New York (1998)

    Google Scholar 

  45. Conway, R.W.: An Experimental Investigation of Priority Assignment in a Job Shop. Rand Corporation Memorandum, RM-3789-PR, Santa Monica (1964)

    Google Scholar 

  46. LeGrande, E.: The development of a factory simulation using actual operating data. Manage. Technol. 3(1), 1–19 (1963)

    Google Scholar 

  47. Nelson, R.T.: Simulation of labor efficiency and centralized assignment in a production model. Manage. Sci. 17(2), 97–106 (1970)

    Article  Google Scholar 

  48. Baker, K.R., Dan Trietsch, D.: Principles of Sequencing and Scheduling. Wiley, New Jersey (2009)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justyna Trojanowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Trojanowska, J., Varela, M.L.R., Machado, J. (2017). The Tool Supporting Decision Making Process in Area of Job-Shop Scheduling. In: Rocha, Á., Correia, A., Adeli, H., Reis, L., Costanzo, S. (eds) Recent Advances in Information Systems and Technologies. WorldCIST 2017. Advances in Intelligent Systems and Computing, vol 571. Springer, Cham. https://doi.org/10.1007/978-3-319-56541-5_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56541-5_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56540-8

  • Online ISBN: 978-3-319-56541-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics