Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Hierarchical Re-estimation of Topic Models for Measuring Topical Diversity

  • Conference paper
  • First Online:
Advances in Information Retrieval (ECIR 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10193))

Included in the following conference series:

  • 2722 Accesses

Abstract

A high degree of topical diversity is often considered to be an important characteristic of interesting text documents. A recent proposal for measuring topical diversity identifies three elements for assessing diversity: words, topics, and documents as collections of words. Topic models play a central role in this approach. Using standard topic models for measuring diversity of documents is suboptimal due to generality and impurity. General topics only include common information from a background corpus and are assigned to most of the documents in the collection. Impure topics contain words that are not related to the topic; impurity lowers the interpretability of topic models and impure topics are likely to get assigned to documents erroneously. We propose a hierarchical re-estimation approach for topic models to combat generality and impurity; the proposed approach operates at three levels: words, topics, and documents. Our re-estimation approach for measuring documents’ topical diversity outperforms the state of the art on PubMed dataset which is commonly used for diversity experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    As the DR level of re-estimation directly employs the parsimonious language modeling techniques in [9], we omit it from our in-depth analysis.

  2. 2.

    We use a dump of June 2, 2015, containing 15.6 million articles.

  3. 3.

    Available at http://www.ai.mit.edu/people/~jrennie/20Newsgroups/.

  4. 4.

    Available at http://disi.unitn.it/moschitti/corpora.htm.

References

  1. U.S. National Library of Medicine. Pubmed Central Open Access Initiative (2010)

    Google Scholar 

  2. Azarbonyad, H., Saan, F., Dehghani, M., Marx, M., Kamps, J.: Are topically diverse documents also interesting? In: Mothe, J., Savoy, J., Kamps, J., Pinel-Sauvagnat, K., Jones, G.J.F., SanJuan, E., Cappellato, L., Ferro, N. (eds.) CLEF 2015. LNCS, vol. 9283, pp. 215–221. Springer, Cham (2015). doi:10.1007/978-3-319-24027-5_19

    Chapter  Google Scholar 

  3. Bache, K., Newman, D., Smyth, P.: Text-based measures of document diversity. In KDD (2013)

    Google Scholar 

  4. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3(4–5), 993–1022 (2003)

    MATH  Google Scholar 

  5. Boyd-Gaber, J., Mimno, D., Newman, D.: Care and feeding of topic models. In: Mixed Membership Models & Their Applic. CRC Press (2014)

    Google Scholar 

  6. Dehghani, M., Azarbonyad, H., Kamps, J., Marx, M.: Two-way parsimonious classification models for evolving hierarchies. In: Fuhr, N., Quaresma, P., Gonçalves, T., Larsen, B., Balog, K., Macdonald, C., Cappellato, L., Ferro, N. (eds.) CLEF 2016. LNCS, vol. 9822, pp. 69–82. Springer, Heidelberg (2016). doi:10.1007/978-3-319-44564-9_6

    Chapter  Google Scholar 

  7. Dehghani, M., Azarbonyad, H., Kamps, J., Marx, M.: On horizontal and vertical separation in hierarchical text classification. In: ICTIR (2016)

    Google Scholar 

  8. Derzinski, M., Rohanimanesh, K.: An information theoretic approach to quantifying text interestingness. In: NIPS MLNLP Workshop (2014)

    Google Scholar 

  9. Hiemstra, D., Robertson, S., Zaragoza, H.: Parsimonious language models for information retrieval. In: SIGIR (2004)

    Google Scholar 

  10. Lacoste-Julien, S., Sha, F., Jordan, M.I.: DiscLDA: discriminative learning for dimensionality reduction and classification. In: NIPS (2009)

    Google Scholar 

  11. Lau, J.H., Newman, D., Baldwin, T.: Machine reading tea leaves: automatically evaluating topic coherence and topic model quality. In: EACL (2014)

    Google Scholar 

  12. Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: RCV1: a new benchmark collection for text categorization research. J. Mach. Learn. Res. 5, 361–397 (2004)

    Google Scholar 

  13. Lin, T., Tian, W., Mei, Q., Cheng, H.: The dual-sparse topic model: Mining focused topics and focused terms in short text. In: WWW (2014)

    Google Scholar 

  14. Manning, C.D., Raghavan, P., SchĂĽtze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  15. Mehrotra, R., Sanner, S., Buntine, W., Xie, L.: Improving LDA topic models for microblogs via tweet pooling and automatic labeling. In: SIGIR (2013)

    Google Scholar 

  16. Nguyen, D.Q., Billingsley, R., Du, L., Johnson, M.: Improving topic models with latent feature word representations. Trans. Assoc. Comput. Linguist. 3, 299–313 (2015)

    Google Scholar 

  17. Rao, C.: Diversity and dissimilarity coefficients: a unified approach. Theoret. Popul. Biol. 21(1), 24–43 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  18. Röder, M., Both, A., Hinneburg, A.: Exploring the space of topic coherence measures. In: WSDM (2015)

    Google Scholar 

  19. Soleimani, H., Miller, D.: Parsimonious topic models with salient word discovery. IEEE Trans. Knowl. Data Eng. 27(3), 824–837 (2015)

    Article  Google Scholar 

  20. Solow, A., Polasky, S., Broadus, J.: On the measurement of biological diversity. J. Environ. Econ. Manag. 24(1), 60–68 (1993)

    Article  Google Scholar 

  21. Wallach, H.M., Mimno, D.M., McCallum, A.: Rethinking LDA: why priors matter. In: NIPS (2009)

    Google Scholar 

  22. Wang, C., Blei, D.M.: Decoupling sparsity and smoothness in the discrete hierarchical dirichlet process. In: NIPS (2009)

    Google Scholar 

  23. Williamson, S., Wang, C., Heller, K.A., Blei, D.M.: The IBP compound Dirichlet process and its application to focused topic modeling. In: ICML (2010)

    Google Scholar 

  24. Xie, P., Xing, E.P.: Integrating document clustering and topic modeling. In: UAI (2013)

    Google Scholar 

  25. Yan, X., Guo, J., Lan, Y., Cheng, X.: A biterm topic model for short texts. In: WWW (2013)

    Google Scholar 

  26. Zhai, C., Lafferty, J.: Model-based feedback in the language modeling approach to information retrieval. In: CIKM (2001)

    Google Scholar 

Download references

Acknowledgments

This research was supported by Ahold Delhaize, Amsterdam Data Science, Blendle, the Bloomberg Research Grant program, the Dutch national program COMMIT, Elsevier, the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreements nr 283465 (ENVRI) and 312827 (VOX-Pol), the Microsoft Research Ph.D. program, the Netherlands eScience Center under project number 027.012.105, the Netherlands Institute for Sound and Vision, the Netherlands Organisation for Scientific Research (NWO) under project nrs 314.99.108, 600.006.014, HOR-11-10, CI-14-25, 652.-002.-001, 612.-001.-551, 652.-001.-003, 314-98-071, and Yandex. All content represents the opinion of the authors, which is not necessarily shared or endorsed by their respective employers and/or sponsors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hosein Azarbonyad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Azarbonyad, H., Dehghani, M., Kenter, T., Marx, M., Kamps, J., de Rijke, M. (2017). Hierarchical Re-estimation of Topic Models for Measuring Topical Diversity. In: Jose, J., et al. Advances in Information Retrieval. ECIR 2017. Lecture Notes in Computer Science(), vol 10193. Springer, Cham. https://doi.org/10.1007/978-3-319-56608-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56608-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56607-8

  • Online ISBN: 978-3-319-56608-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics