Abstract
Automatic summarization of reader comments in on-line news is a challenging but clearly useful task. Work to date has produced extractive summaries using well-known techniques from other areas of NLP. But do users really want these, and do they support users in realistic tasks? We specify an alternative summary type for reader comments, based on the notions of issues and viewpoints, and demonstrate our user interface to present it. An evaluation to assess how well summarization systems support users in time-limited tasks (identifying issues and characterizing opinions) gives good results for this prototype.
This research is supported by the European Union’s Seventh Framework Program project SENSEI (FP7-610916).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Khabiri, E., Caverlee, J., Hsu, C.F.: Summarizing user-contributed comments. In: ICWSM, Barcelona, pp. 534–537 (2011)
Ma, Z., Sun, A., Yuan, Q., Cong, G.: Topic-driven reader comments summarization. In: Proceedings of the 21st ACM international Conference on Information and Knowledge Management, CIKM 2012, pp. 265–274 (2012)
Llewellyn, C., Grover, C., Oberlander, J.: Summarizing newspaper comments. In: ICWSM, Ann Arbor, June 2014
Barker, E., Gaizauskas, R.: Summarizing multi-party argumentative conversations in reader comment on news. In: ACL 3rd Workshop on Argument Mining (2016)
Funk, A., Gaizauskas, R., Favre, B.: A document repository for social media and speech conversations. In: LREC (2016)
Aker, A., Kurtic, E., Balamurali, A.R., Paramita, M., Barker, E., Hepple, M., Gaizauskas, R.: A graph-based approach to topic clustering for online comments to news. In: Ferro, N., Crestani, F., Moens, M.-F., Mothe, J., Silvestri, F., Nunzio, G.M., Hauff, C., Silvello, G. (eds.) ECIR 2016. LNCS, vol. 9626, pp. 15–29. Springer, Heidelberg (2016). doi:10.1007/978-3-319-30671-1_2
Barker, E., Paramita, M., Aker, A., Kurtic, E., Hepple, M., Gaizauskas, R.: The sensei annotated corpus: human summaries of reader comment conversations in on-line news. In: SIGDIAL (2016)
Aker, A., Paramita, M., Kurtic, E., Funk, A., Barker, E., Hepple, M., Gaizauskas, R.: Automatic label generation for news comment clusters. In: International Natural Language Generation Conference (INLG), Edinburgh, September 2016
Barker, E., Funk, A., Paramita, M., Kurtic, E., Aker, A., Foster, J., Hepple, M., Gaizauskas, R.: What’s the issue here? Task-based evaluation of reader comment summarization systems. In: LREC, May 2016
Danieli, M., Barker, E., Bechet, F., Caramia, C., Celli, F., Favre, B., Gaizauskas, R., Molinari, L., Palumbo, A., Paramita, M., Riccardi, G., Lanzolla, V.: Final report of prototype evaluation. Deliverable D1.4, SENSEI Consortium (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Funk, A., Aker, A., Barker, E., Paramita, M.L., Hepple, M., Gaizauskas, R. (2017). The SENSEI Overview of Newspaper Readers’ Comments. In: Jose, J., et al. Advances in Information Retrieval. ECIR 2017. Lecture Notes in Computer Science(), vol 10193. Springer, Cham. https://doi.org/10.1007/978-3-319-56608-5_77
Download citation
DOI: https://doi.org/10.1007/978-3-319-56608-5_77
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-56607-8
Online ISBN: 978-3-319-56608-5
eBook Packages: Computer ScienceComputer Science (R0)