Abstract
Protein design algorithms that compute binding affinity search for sequences with an energetically favorable free energy of binding. Recent work shows that the following design principles improve the biological accuracy of protein design: ensemble-based design and continuous conformational flexibility. Ensemble-based algorithms capture a measure of entropic contributions to binding affinity, \(K_a\). Designs using backbone flexibility and continuous side-chain flexibility better model conformational flexibility. A third design principle, provable guarantees of accuracy, ensures that an algorithm computes the best sequences defined by the input model (i.e. input structures, energy function, and allowed protein flexibility). However, previous provable methods that model ensembles and continuous flexibility are single-sequence algorithms, which are very costly: linear in the number of sequences and thus exponential in the number of mutable residues. To address these computational challenges, we introduce a new protein design algorithm, \(BBK^*\), that retains all aforementioned design principles yet provably and efficiently computes the tightest-binding sequences. A key innovation of \(BBK^*\) is the multi-sequence (MS) bound: \(BBK^*\) efficiently computes a single provable upper bound to approximate \(K_a\) for a combinatorial number of sequences, and entirely avoids single-sequence computation for all provably suboptimal sequences. Thus, to our knowledge, \(BBK^*\) is the first provable, ensemble-based \(K_a\) algorithm to run in time sublinear in the number of sequences. Computational experiments on 204 protein design problems show that \(BBK^*\) finds the tightest binding sequences while approximating \(K_a\) for up to \(10^5\)-fold fewer sequences than exhaustive enumeration. Furthermore, for 51 protein-ligand design problems, \(BBK^*\) provably approximates \(K_a\) up to 1982-fold faster than the previous state-of-the-art iMinDEE/\(A^*\)/\(K^*\) algorithm. Therefore, \(BBK^*\) not only accelerates protein designs that are possible with previous provable algorithms, but also efficiently performs designs that are too large for previous methods.
A.A. Ojewole and J.D. Jou contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Boas, F.E., Harbury, P.B.: Curr. Opin. Struct. Biol. 17, 199 (2007)
Carmen, S., Jermutus, L.: Brief Funct. Genomic Proteomic 1, 189 (2002)
Chen, C.-Y., et al.: Proc. Natl. Acad. Sci. USA 106, 3764 (2009)
Desmet, J., et al.: Nature 356, 539 (1992)
Donald, B.R.: Algorithms in Structural Molecular Biology. MIT Press, Cambridge (2011)
Fleishman, S.J., et al.: Protein Sci. 20, 753 (2011)
Frey, K.M., et al.: Proc. Natl. Acad. Sci. USA 107, 13707 (2010)
Fromer, M., Yanover, C.: Bioinformatics 24, i214 (2008)
Gainza, P., Nisonoff, H.M., Donald, B.R.: Curr. Opin. Struct. Biol. 39, 16 (2016)
Gainza, P., Roberts, K.E., Donald, B.R.: PLoS Comput. Biol. 8, e1002335 (2012)
Gainza, P., et al.: Methods Enzymol 523, 87 (2013). Program, user manual, and source code are available at www.cs.duke.edu/donaldlab/software.php
Georgiev, I., et al.: Retrovirology 9(Suppl. 2), P50 (2012)
Georgiev, I., Donald, B.R.: Bioinformatics 23, i185 (2007)
Georgiev, I., Lilien, R.H., Donald, B.R.: Bioinformatics 22, e174 (2006)
Georgiev, I., Lilien, R.H., Donald, B.R.: J. Comput. Chem. 29, 1527 (2008)
Georgiev, I.S.: Novel algorithms for computational protein design, with applications to enzyme redesign and small-molecule inhibitor design. Ph.D. thesis, Duke University (2009). http://hdl.handle.net/10161/1113
Georgiev, I.S., et al.: J. Immunol. 192, 1100 (2014)
Gilson, M.K., et al.: Biophys. J. 72, 1047 (1997)
Gorczynski, M.J., et al.: Chem. Biol. 14, 1186 (2007)
Hallen, M.A., Donald, B.R.: J. Comput. Biol. 23, 311 (2016)
Hallen, M.A., Gainza, P., Donald, B.R.: J. Chem. Theory. Comput. 11, 2292 (2015)
Hallen, M.A., Jou, J.D., Donald, B.R.: J. Comput. Biol. Epub ahead of print (2016)
Hallen, M.A., Keedy, D.A., Donald, B.R.: Proteins 81, 18 (2013)
Hart, P., Nilsson, N., Raphael, B.: IEEE Trans. SSC 4, 100 (1968)
Jou, J.D., et al.: J. Comput. Biol. 23, 413 (2016)
Kingsford, C.L., Chazelle, B., Singh, M.: Bioinformatics 21, 1028 (2005)
Kuhlman, B., Baker, D.: Proc. Natl. Acad. Sci. USA 97, 10383 (2000)
Leach, A.R., Lemon, A.P.: Proteins 33, 227 (1998)
Leaver-Fay, A., et al.: Methods Enzymol. 487, 545 (2011)
Lee, C., Levitt, M.: Nature 352, 448 (1991)
Leech, J., Prins, J.F., Hermans, J.: Comput. Sci. Eng. 3, 38 (1996)
Lilien, R.H., et al.: J. Comput. Biol. 12, 740 (2005)
Lovell, S.C., et al.: Proteins 40, 389 (2000)
Lower, S.K., et al.: Proc. Natl. Acad. Sci. USA 108, 18372 (2011)
Nisonoff, H., Thesis, B.S.: Department of Mathematics, Duke University (2015). http://hdl.handle.net/10161/9746
Ojewole, A.A., et al.: Supplementary information: BBK* (Branch and Bound over K*): a provable and efficient ensemble-based algorithm to optimize stability and binding affinity over large sequence spaces for sparse approximations of computational protein design (2015). http://www.cs.duke.edu/donaldlab/Supplementary/recomb17/bbkstar
Ojewole, A., et al.: Methods Mol. Biol. 1529, 291 (2017)
Pál, G., et al.: J. Biol. Chem. 281, 22378 (2006)
Peng, J., et al.: [q-bio.BM] (2015). arXiv:1504.05467
Pierce, N.A., Winfree, E.: Protein Eng 15, 779 (2002)
Reeve, S.M., et al.: Proc. Natl. Acad. Sci. USA 112, 749 (2015)
Roberts, K.E., et al.: PLoS Comput. Biol. 8, e1002477 (2012)
Roberts, K.E., Donald, B.R.: Proteins 83, 1151 (2015)
Roberts, K.E., et al.: Proteins 83, 1859 (2015)
Rudicell, R.S., et al.: J. Virol. 88, 12669 (2014)
Sciretti, D., et al.: Proteins 74, 176 (2009)
Silver, N.W., et al.: J. Chem. Theory Comput. 9, 5098 (2013)
Simoncini, D., et al.: J. Chem. Theory. Comput. 11, 5980 (2015)
Stevens, B.W., et al.: Biochemistry 45, 15495 (2006)
Traoré, S., et al.: Bioinformatics 29, 2129 (2013)
Traoré, S., et al.: J Comput. Chem. 37, 1048 (2016)
Valiant, L.G.: Theoret. Comput. Sci. 8, 189 (1979)
Viricel, C., et al.: The 22nd International Conference on Principles and Practice of Constraint Programming (2016)
Wainwright, M.J., Jaakkola, T.S., Willsky, A.S.: CoRR abs/1301.0610 (2013)
Xu, J.: 9th Annual International Conference, RECOMB, vol. 3500, p. 423 (2005)
Xu, J., Berger, B.: J. ACM 53, 533 (2006)
Zheng, F., et al.: J. Am. Chem. Soc. 130, 12148 (2008)
Zhou, J., Grigoryan, G.: Protein Sci 24, 508 (2015)
Acknowledgments
We thank Drs. Mark Hallen and Pablo Gainza for helpful discussions and for providing useful protein-ligand binding problems; Dr. Jeffrey Martin for software optimizations; Hunter Nisonoff, Anna Lowegard and all members of the Donald lab for helpful discussions; and the NSF (GRFP DGF 1106401 to AAO) and the NIH (R01-GM78031 to BRD, R01-HL119648 to VGF) for funding.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Ojewole, A.A., Jou, J.D., Fowler, V.G., Donald, B.R. (2017). \(BBK^*\) (Branch and Bound over \(K^*\)): A Provable and Efficient Ensemble-Based Algorithm to Optimize Stability and Binding Affinity over Large Sequence Spaces. In: Sahinalp, S. (eds) Research in Computational Molecular Biology. RECOMB 2017. Lecture Notes in Computer Science(), vol 10229. Springer, Cham. https://doi.org/10.1007/978-3-319-56970-3_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-56970-3_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-56969-7
Online ISBN: 978-3-319-56970-3
eBook Packages: Computer ScienceComputer Science (R0)