Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

\(BBK^*\) (Branch and Bound over \(K^*\)): A Provable and Efficient Ensemble-Based Algorithm to Optimize Stability and Binding Affinity over Large Sequence Spaces

  • Conference paper
  • First Online:
Research in Computational Molecular Biology (RECOMB 2017)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10229))

Abstract

Protein design algorithms that compute binding affinity search for sequences with an energetically favorable free energy of binding. Recent work shows that the following design principles improve the biological accuracy of protein design: ensemble-based design and continuous conformational flexibility. Ensemble-based algorithms capture a measure of entropic contributions to binding affinity, \(K_a\). Designs using backbone flexibility and continuous side-chain flexibility better model conformational flexibility. A third design principle, provable guarantees of accuracy, ensures that an algorithm computes the best sequences defined by the input model (i.e. input structures, energy function, and allowed protein flexibility). However, previous provable methods that model ensembles and continuous flexibility are single-sequence algorithms, which are very costly: linear in the number of sequences and thus exponential in the number of mutable residues. To address these computational challenges, we introduce a new protein design algorithm, \(BBK^*\), that retains all aforementioned design principles yet provably and efficiently computes the tightest-binding sequences. A key innovation of \(BBK^*\) is the multi-sequence (MS) bound: \(BBK^*\) efficiently computes a single provable upper bound to approximate \(K_a\) for a combinatorial number of sequences, and entirely avoids single-sequence computation for all provably suboptimal sequences. Thus, to our knowledge, \(BBK^*\) is the first provable, ensemble-based \(K_a\) algorithm to run in time sublinear in the number of sequences. Computational experiments on 204 protein design problems show that \(BBK^*\) finds the tightest binding sequences while approximating \(K_a\) for up to \(10^5\)-fold fewer sequences than exhaustive enumeration. Furthermore, for 51 protein-ligand design problems, \(BBK^*\) provably approximates \(K_a\) up to 1982-fold faster than the previous state-of-the-art iMinDEE/\(A^*\)/\(K^*\) algorithm. Therefore, \(BBK^*\) not only accelerates protein designs that are possible with previous provable algorithms, but also efficiently performs designs that are too large for previous methods.

A.A. Ojewole and J.D. Jou contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boas, F.E., Harbury, P.B.: Curr. Opin. Struct. Biol. 17, 199 (2007)

    Article  Google Scholar 

  2. Carmen, S., Jermutus, L.: Brief Funct. Genomic Proteomic 1, 189 (2002)

    Article  Google Scholar 

  3. Chen, C.-Y., et al.: Proc. Natl. Acad. Sci. USA 106, 3764 (2009)

    Article  Google Scholar 

  4. Desmet, J., et al.: Nature 356, 539 (1992)

    Article  Google Scholar 

  5. Donald, B.R.: Algorithms in Structural Molecular Biology. MIT Press, Cambridge (2011)

    Google Scholar 

  6. Fleishman, S.J., et al.: Protein Sci. 20, 753 (2011)

    Article  Google Scholar 

  7. Frey, K.M., et al.: Proc. Natl. Acad. Sci. USA 107, 13707 (2010)

    Article  Google Scholar 

  8. Fromer, M., Yanover, C.: Bioinformatics 24, i214 (2008)

    Article  Google Scholar 

  9. Gainza, P., Nisonoff, H.M., Donald, B.R.: Curr. Opin. Struct. Biol. 39, 16 (2016)

    Article  Google Scholar 

  10. Gainza, P., Roberts, K.E., Donald, B.R.: PLoS Comput. Biol. 8, e1002335 (2012)

    Article  Google Scholar 

  11. Gainza, P., et al.: Methods Enzymol 523, 87 (2013). Program, user manual, and source code are available at www.cs.duke.edu/donaldlab/software.php

  12. Georgiev, I., et al.: Retrovirology 9(Suppl. 2), P50 (2012)

    Google Scholar 

  13. Georgiev, I., Donald, B.R.: Bioinformatics 23, i185 (2007)

    Article  Google Scholar 

  14. Georgiev, I., Lilien, R.H., Donald, B.R.: Bioinformatics 22, e174 (2006)

    Article  Google Scholar 

  15. Georgiev, I., Lilien, R.H., Donald, B.R.: J. Comput. Chem. 29, 1527 (2008)

    Article  Google Scholar 

  16. Georgiev, I.S.: Novel algorithms for computational protein design, with applications to enzyme redesign and small-molecule inhibitor design. Ph.D. thesis, Duke University (2009). http://hdl.handle.net/10161/1113

  17. Georgiev, I.S., et al.: J. Immunol. 192, 1100 (2014)

    Article  Google Scholar 

  18. Gilson, M.K., et al.: Biophys. J. 72, 1047 (1997)

    Article  Google Scholar 

  19. Gorczynski, M.J., et al.: Chem. Biol. 14, 1186 (2007)

    Article  Google Scholar 

  20. Hallen, M.A., Donald, B.R.: J. Comput. Biol. 23, 311 (2016)

    Article  Google Scholar 

  21. Hallen, M.A., Gainza, P., Donald, B.R.: J. Chem. Theory. Comput. 11, 2292 (2015)

    Article  Google Scholar 

  22. Hallen, M.A., Jou, J.D., Donald, B.R.: J. Comput. Biol. Epub ahead of print (2016)

    Google Scholar 

  23. Hallen, M.A., Keedy, D.A., Donald, B.R.: Proteins 81, 18 (2013)

    Article  Google Scholar 

  24. Hart, P., Nilsson, N., Raphael, B.: IEEE Trans. SSC 4, 100 (1968)

    Google Scholar 

  25. Jou, J.D., et al.: J. Comput. Biol. 23, 413 (2016)

    Article  MathSciNet  Google Scholar 

  26. Kingsford, C.L., Chazelle, B., Singh, M.: Bioinformatics 21, 1028 (2005)

    Article  Google Scholar 

  27. Kuhlman, B., Baker, D.: Proc. Natl. Acad. Sci. USA 97, 10383 (2000)

    Article  Google Scholar 

  28. Leach, A.R., Lemon, A.P.: Proteins 33, 227 (1998)

    Article  Google Scholar 

  29. Leaver-Fay, A., et al.: Methods Enzymol. 487, 545 (2011)

    Article  Google Scholar 

  30. Lee, C., Levitt, M.: Nature 352, 448 (1991)

    Article  Google Scholar 

  31. Leech, J., Prins, J.F., Hermans, J.: Comput. Sci. Eng. 3, 38 (1996)

    Article  Google Scholar 

  32. Lilien, R.H., et al.: J. Comput. Biol. 12, 740 (2005)

    Article  Google Scholar 

  33. Lovell, S.C., et al.: Proteins 40, 389 (2000)

    Article  Google Scholar 

  34. Lower, S.K., et al.: Proc. Natl. Acad. Sci. USA 108, 18372 (2011)

    Article  Google Scholar 

  35. Nisonoff, H., Thesis, B.S.: Department of Mathematics, Duke University (2015). http://hdl.handle.net/10161/9746

  36. Ojewole, A.A., et al.: Supplementary information: BBK* (Branch and Bound over K*): a provable and efficient ensemble-based algorithm to optimize stability and binding affinity over large sequence spaces for sparse approximations of computational protein design (2015). http://www.cs.duke.edu/donaldlab/Supplementary/recomb17/bbkstar

  37. Ojewole, A., et al.: Methods Mol. Biol. 1529, 291 (2017)

    Article  Google Scholar 

  38. Pál, G., et al.: J. Biol. Chem. 281, 22378 (2006)

    Article  Google Scholar 

  39. Peng, J., et al.: [q-bio.BM] (2015). arXiv:1504.05467

  40. Pierce, N.A., Winfree, E.: Protein Eng 15, 779 (2002)

    Article  Google Scholar 

  41. Reeve, S.M., et al.: Proc. Natl. Acad. Sci. USA 112, 749 (2015)

    Article  Google Scholar 

  42. Roberts, K.E., et al.: PLoS Comput. Biol. 8, e1002477 (2012)

    Article  Google Scholar 

  43. Roberts, K.E., Donald, B.R.: Proteins 83, 1151 (2015)

    Article  Google Scholar 

  44. Roberts, K.E., et al.: Proteins 83, 1859 (2015)

    Article  Google Scholar 

  45. Rudicell, R.S., et al.: J. Virol. 88, 12669 (2014)

    Article  Google Scholar 

  46. Sciretti, D., et al.: Proteins 74, 176 (2009)

    Article  Google Scholar 

  47. Silver, N.W., et al.: J. Chem. Theory Comput. 9, 5098 (2013)

    Article  Google Scholar 

  48. Simoncini, D., et al.: J. Chem. Theory. Comput. 11, 5980 (2015)

    Article  Google Scholar 

  49. Stevens, B.W., et al.: Biochemistry 45, 15495 (2006)

    Article  Google Scholar 

  50. Traoré, S., et al.: Bioinformatics 29, 2129 (2013)

    Article  Google Scholar 

  51. Traoré, S., et al.: J Comput. Chem. 37, 1048 (2016)

    Article  Google Scholar 

  52. Valiant, L.G.: Theoret. Comput. Sci. 8, 189 (1979)

    Article  MathSciNet  Google Scholar 

  53. Viricel, C., et al.: The 22nd International Conference on Principles and Practice of Constraint Programming (2016)

    Google Scholar 

  54. Wainwright, M.J., Jaakkola, T.S., Willsky, A.S.: CoRR abs/1301.0610 (2013)

    Google Scholar 

  55. Xu, J.: 9th Annual International Conference, RECOMB, vol. 3500, p. 423 (2005)

    Google Scholar 

  56. Xu, J., Berger, B.: J. ACM 53, 533 (2006)

    Article  MathSciNet  Google Scholar 

  57. Zheng, F., et al.: J. Am. Chem. Soc. 130, 12148 (2008)

    Article  Google Scholar 

  58. Zhou, J., Grigoryan, G.: Protein Sci 24, 508 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Drs. Mark Hallen and Pablo Gainza for helpful discussions and for providing useful protein-ligand binding problems; Dr. Jeffrey Martin for software optimizations; Hunter Nisonoff, Anna Lowegard and all members of the Donald lab for helpful discussions; and the NSF (GRFP DGF 1106401 to AAO) and the NIH (R01-GM78031 to BRD, R01-HL119648 to VGF) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce R. Donald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ojewole, A.A., Jou, J.D., Fowler, V.G., Donald, B.R. (2017). \(BBK^*\) (Branch and Bound over \(K^*\)): A Provable and Efficient Ensemble-Based Algorithm to Optimize Stability and Binding Affinity over Large Sequence Spaces. In: Sahinalp, S. (eds) Research in Computational Molecular Biology. RECOMB 2017. Lecture Notes in Computer Science(), vol 10229. Springer, Cham. https://doi.org/10.1007/978-3-319-56970-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56970-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56969-7

  • Online ISBN: 978-3-319-56970-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics