Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Conservative Semi-Lagrangian Method for the Advection Problem

  • Conference paper
  • First Online:
Numerical Analysis and Its Applications (NAA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10187))

Included in the following conference series:

  • 1867 Accesses

Abstract

In the paper, a new discrete analogue of an initial-boundary value problem is presented for the two-dimensional advection equation arising from a scalar time-dependent hyperbolic conservation law. At each time level, an approximate solution is found as a bilinear function on a uniform rectangular grid. For the presented scheme, a discrete analogue of the local integral balance equation is valid between two neighboring time levels. The numerical experiments are discussed for a solution with strong gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dupont, T., Liu, Y.: Back and forth error compensation and correction methods for semi-Lagrangian schemes with application to level set interface computations. Math. Comp. 76(258), 647–668 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Efremov, A.A., Karepova, E.D., Vyatkin, A.V.: Some features of the CUDA implementation of the semi-Lagrangian method for the advection problem. In: AIP Conference Proceedings, vol. 1684, 090003-1-10 (2015)

    Google Scholar 

  3. Selle, A., Fedkiw, R., Kim, B., Liu, Y., Rossignac, J.: An unconditionally stable MacCormack method. J. Sci. Comp. 35(2), 350–371 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Zerroukat, M., Wood, N., Staniforth, A.: Application of the parabolic spline method (PSM) to a multidimensional conservative semi-lagrangian transport scheme (SLICE). J. Comput. Phys. 225(1), 935–948 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Lentine, M., Grétarsson, J.T., Fedkiw, R.: An unconditionally stable fully conservative semi-lagrangian method. J. Comput. Phys. 230(8), 2857–2879 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Griebel, M., Dornseifer, T., Neunhoeffer, T.: Numerical Simulation in Fluid Dynamics: A Practical Introduction. SIAM, Philadelphia (1998)

    Book  MATH  Google Scholar 

  7. Anderson, J.D.: Computational Fluid Dynamics: The Basics with Applications. McGraw-Hill, New York (1995)

    Google Scholar 

  8. Morton, K.W.: Numerical Solution of Convection-Diffusion Problems. Chapman & Hall, London (1996)

    MATH  Google Scholar 

  9. Efremov, A.A., Karepova, E.D., Shaydurov, V.V., Vyatkin, A.V.: A computational realization of a semi-lagrangian method for solving the advection equation. J. Appl. Math. 2014, 610398 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work is supported by RFBR (Project 14-01-00296).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeniya Karepova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Efremov, A., Karepova, E., Shaidurov, V. (2017). A Conservative Semi-Lagrangian Method for the Advection Problem. In: Dimov, I., Faragó, I., Vulkov, L. (eds) Numerical Analysis and Its Applications. NAA 2016. Lecture Notes in Computer Science(), vol 10187. Springer, Cham. https://doi.org/10.1007/978-3-319-57099-0_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57099-0_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57098-3

  • Online ISBN: 978-3-319-57099-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics