Abstract
In the paper, a new discrete analogue of an initial-boundary value problem is presented for the two-dimensional advection equation arising from a scalar time-dependent hyperbolic conservation law. At each time level, an approximate solution is found as a bilinear function on a uniform rectangular grid. For the presented scheme, a discrete analogue of the local integral balance equation is valid between two neighboring time levels. The numerical experiments are discussed for a solution with strong gradients.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Dupont, T., Liu, Y.: Back and forth error compensation and correction methods for semi-Lagrangian schemes with application to level set interface computations. Math. Comp. 76(258), 647–668 (2007)
Efremov, A.A., Karepova, E.D., Vyatkin, A.V.: Some features of the CUDA implementation of the semi-Lagrangian method for the advection problem. In: AIP Conference Proceedings, vol. 1684, 090003-1-10 (2015)
Selle, A., Fedkiw, R., Kim, B., Liu, Y., Rossignac, J.: An unconditionally stable MacCormack method. J. Sci. Comp. 35(2), 350–371 (2008)
Zerroukat, M., Wood, N., Staniforth, A.: Application of the parabolic spline method (PSM) to a multidimensional conservative semi-lagrangian transport scheme (SLICE). J. Comput. Phys. 225(1), 935–948 (2007)
Lentine, M., Grétarsson, J.T., Fedkiw, R.: An unconditionally stable fully conservative semi-lagrangian method. J. Comput. Phys. 230(8), 2857–2879 (2011)
Griebel, M., Dornseifer, T., Neunhoeffer, T.: Numerical Simulation in Fluid Dynamics: A Practical Introduction. SIAM, Philadelphia (1998)
Anderson, J.D.: Computational Fluid Dynamics: The Basics with Applications. McGraw-Hill, New York (1995)
Morton, K.W.: Numerical Solution of Convection-Diffusion Problems. Chapman & Hall, London (1996)
Efremov, A.A., Karepova, E.D., Shaydurov, V.V., Vyatkin, A.V.: A computational realization of a semi-lagrangian method for solving the advection equation. J. Appl. Math. 2014, 610398 (2014)
Acknowledgements
The work is supported by RFBR (Project 14-01-00296).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Efremov, A., Karepova, E., Shaidurov, V. (2017). A Conservative Semi-Lagrangian Method for the Advection Problem. In: Dimov, I., Faragó, I., Vulkov, L. (eds) Numerical Analysis and Its Applications. NAA 2016. Lecture Notes in Computer Science(), vol 10187. Springer, Cham. https://doi.org/10.1007/978-3-319-57099-0_35
Download citation
DOI: https://doi.org/10.1007/978-3-319-57099-0_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-57098-3
Online ISBN: 978-3-319-57099-0
eBook Packages: Computer ScienceComputer Science (R0)