Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

American Options in an Illiquid Market: Nonlinear Complementary Method

  • Conference paper
  • First Online:
Numerical Analysis and Its Applications (NAA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10187))

Included in the following conference series:

Abstract

In this paper, we consider the nonlinear complementary problem (NCP) arising from the pricing American options in a liquidity switching market. The NCP arises from discretising a coupled system of Hamilton-Bellman-Jacobi (HJB) equations whose solutions are the American option buyer indifference prices. In order to price American options, we derive a complementary problem. Due to the form of liquidity assumptions, the system of (HJB) equations are nonlinear which when discretised give rise to a NCP. We apply two Newton-like methods and perform various numerical experiments to illustrate the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bjerksund, P., Stensland, G.: Closed-form approximation of american options. Scand. J. Manag. 9, S88–S99 (1993)

    Article  Google Scholar 

  2. Carmona, R.: Indifference Pricing: Theory and Applications. Princeton University Press, Princeton (2009)

    MATH  Google Scholar 

  3. De Luca, T., Facchinei, F., Kanzow, C.: A semismooth equation approach to the solution of nonlinear complementary problems. Math. Program. 75, 407–439 (1996)

    MATH  Google Scholar 

  4. De Luca, T., Facchinei, F., Kanzow, C.: A theoretic and numerical comparison of some semismooth algorithms for complementary problems. Comput. Optim. Appl. 16, 173–205 (1996)

    Article  MATH  Google Scholar 

  5. Harker, P.T., Pang, J.S.: A damped-Newton method for the linear complementarity problem. In: Lectures in Applied Mathematics, vol. 26, pp. 265–284. American Mathematical Society (1996)

    Google Scholar 

  6. Leung, T.S.T.: A Markov-modulated stochastic control problem with optimal multiple stopping with application to finance. In: IEEE Conference on Decision and Control (CDC), pp. 559–566 (2010)

    Google Scholar 

  7. Ludkovski, M., Shen, Q.: European option pricing with liquidity shocks. Int. J. Theor. Appl. Finan. 16, 219–249 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Øksendal, B.: Stochastic Differential Equations. Springer, Heidelberg (2010)

    MATH  Google Scholar 

  9. Pang, J.S.: Newton’s method for B-differential equations. Math. Oper. Res. 15(2), 311–341 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Pang, J.S.: A B-differentiable equation-based, globally and locally quadratically convergent algorithm for nonlinear programs, complementarity and variational inequality problems. Math. Program. 51, 101–131 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Pang, J.S., Huang, J.: Pricing American options with transaction costs by complementarity methods. In: Avellaneda, M. (ed.) Quantitative Analysis in Financial Markets, pp. 172–198 (2002)

    Google Scholar 

  12. Seydel, R.U.: Tools for Computational Finance. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  13. Sun, Z., Zheng, J.: A monotone semismooth Newton type method for a class of complementarity problems. J. Comput. Appl. Math. 235, 1261–1274 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wilmott, P., Howison, S., Dewynne, J.: The Mathematics of Financial Derivatives: A Student Introduction. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Mudzimbabwe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Mudzimbabwe, W., Vulkov, L. (2017). American Options in an Illiquid Market: Nonlinear Complementary Method. In: Dimov, I., Faragó, I., Vulkov, L. (eds) Numerical Analysis and Its Applications. NAA 2016. Lecture Notes in Computer Science(), vol 10187. Springer, Cham. https://doi.org/10.1007/978-3-319-57099-0_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57099-0_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57098-3

  • Online ISBN: 978-3-319-57099-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics