Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Recovery of Brain Function by Neuroprostheses: A Challenge for Neuroscience and Technology

  • Chapter
  • First Online:
Brain-Computer Interface Research

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

Abstract

In a series of studies, we demonstrated a brain-computer interface (BCI) system in which a disabled cerebellar network in rat’s brain was replaced by a biomimetic synthetic model that reliably recovered the motor learning function of the cerebellar network [34, 21]. While we proved feasibility by managing some neuroscientific and methodological challenges, this project was critically suggestive of the grave challenges expected on the way to reach a level of a clinically relevant neuroprosthesis.

Paolo Del Giudice and Matti Mintz authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Ackerley, J. Pardoe, R. Apps R, A novel site of synaptic relay for climbing fibre pathways relaying signals from the motor cortex to the cerebellar cortical C1 zone. J Physiol. 576, 503–518 (2006)

    Google Scholar 

  2. A. Arenz, E.F. Bracey, T.W. Margrie, Sensory representations in cerebellar granule cells. Curr. Opin. Neurobiol. 19(4), 445–451 (2009)

    Article  Google Scholar 

  3. S.A. Bamford, R. Hogri, A. Giovannucci, A.H. Taub, I. Herreros, P.F.M.J. Verschure, M. Mintz, P. Del Giudice, A VLSI field-programmable mixed-signal array to perform neural signal processing and neural modeling in a prosthetic system. IEEE Trans. Neural Syst. Rehabil. Eng. 20, 455–467 (2012)

    Article  Google Scholar 

  4. A.L. Benabid, S. Chabardes, J. Mitrofanis, P. Pollak, Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurol. 8(1), 67–81 (2009)

    Article  Google Scholar 

  5. F. Bengtsson, D.A. Jirenhed, P. Svensson, G. Hesslow, Extinction of conditioned blink responses by cerebello-olivary pathway stimulation. NeuroReport 18, 1479–1482 (2007)

    Article  Google Scholar 

  6. T.W. Berger, R.E. Hampson, D. Song, A. Goonawardena, V.Z. Marmarelis, S.A. Deadwyler, A cortical neural prosthesis for restoring and enhancing memory. J. Neural Eng. 8, 046017 (2011)

    Article  Google Scholar 

  7. I.E. Brown, J.M. Bower, The influence of somatosensory cortex on climbing fiber responses in the lateral hemispheres of the rat cerebellum after peripheral tactile stimulation. J. Neurosci. 22, 6819–6829 (2002)

    Google Scholar 

  8. J.T. Brown, V. Chan-Palay, S.L. Palay, A study of afferent input to the inferior olivary complex in the rat by retrograde axonal transport of horseradish peroxidase. J. Comp. Neurol. 176, 1–22 (1977)

    Article  Google Scholar 

  9. N.L. Cerminara, H. Aoki, M. Loft, I. Sugihara, R. Apps, Structural basis of cerebellar microcircuits in the rat. J. Neurosci. 33(42), 16427–16442 (2013)

    Article  Google Scholar 

  10. N.L. Cerminara, S. Koutsikou, B.M. Lumb, R. Apps, The periaqueductal grey modulates sensory input to the cerebellum: a role in coping behaviour? Eur. J. Neurosci. 29, 2197–2206 (2009)

    Article  Google Scholar 

  11. A.S. Dickey, A. Suminski, Y. Amit, N.G. Hatsopoulos, Single-unit stability using chronically implanted multielectrode arrays. J. Neurophysiol. 102(2), 1331–1339 (2009)

    Article  Google Scholar 

  12. J. Doyon, P. Bellec, R. Amsel, V. Penhune, O. Monchi, J. Carrier, S. Lehéricy, H. Benali, Contributions of the basal ganglia and functionally related brain structures to motor learning. Behav. Brain Res. 199(1), 61–75 (2009)

    Article  Google Scholar 

  13. Z. Gao, B.J. van Beugen, C.I. De Zeeuw, Distributed synergistic plasticity and cerebellar learning. Nat. Rev. Neurosci. 13, 619–635 (2012)

    Article  Google Scholar 

  14. R.E. Hampson, G.A. Gerhardt, V. Marmarelis, D. Song, I. Opris, L. Santos, T.W. Berger, S.A. Deadwyler, Facilitation and restoration of cognitive function in primate prefrontal cortex by a neuroprosthesis that utilizes minicolumn-specific neural firing. J. Neural Eng. 9, 056012 (2012)

    Article  Google Scholar 

  15. R.E. Hampson, D. Song, I. Opris, L.M. Santos, D.C. Shin, G.A. Gerhardt, V.Z. Marmarelis, T.W. Berger, S.A. Deadwyler, Facilitation of memory encoding in primate hippocampus by a neuroprosthesis that promotes task-specific neural firing. J. Neural Eng. 10(6), 066013 (2013)

    Article  Google Scholar 

  16. D.O. Hebb, Drives and the CNS (conceptual nervous system). Psychol. Rev. 62(4), 243 (1955)

    Article  Google Scholar 

  17. R.C. Helmich, I. Toni, G. Deuschl, B.R. Bloem, The pathophysiology of essential tremor and Parkinson’s tremor. Curr. Neurol. Neurosci. Rep. 13(9), 1–10 (2013)

    Article  Google Scholar 

  18. I. Herreros, A. Giovannucci, A.H. Taub, R. Hogri, A. Magal, S. Bamford, R. Prueckl, P.F. Verschure, A cerebellar neuroprosthetic system: computational architecture and in vivo test. Front Bioeng. Biotechnol. 2, 14 (2014)

    Article  Google Scholar 

  19. G. Hesslow, Correspondence between climbing fibre input and motor output in eyeblink-related areas in cat cerebellar cortex. J. Physiol. 476, 229–244 (1994)

    Article  Google Scholar 

  20. C. Hofstötter, M. Mintz, P.F.M.J. Verschure, The cerebellum in action: a simulation and robotics study. Eur. J. Neurosci. 16, 1361–1376 (2002)

    Article  Google Scholar 

  21. R. Hogri, S.A. Bamford, A.H. Taub, A. Magal, P. Del Giudice, M. Mintz, A neuro-inspired model-based closed-loop neuroprosthesis for the substitution of a cerebellar learning function in anesthetized rats. Sci. Rep. 5, 8451 (2015)

    Article  Google Scholar 

  22. P.J. Ifft, S. Shokur, Z. Li, M.A. Lebedev, M.A. Nicolelis, A brain-machine interface enables bimanual arm movements in monkeys. Sci. Transl. Med. 5, 210ra154 (2013)

    Google Scholar 

  23. M. Ito, M. Kano, Long-lasting depression of parallel fiber-purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neurosci. Lett. 33, 253–258 (1982)

    Article  Google Scholar 

  24. J.J. Kim, D.J. Krupa, R.F. Thompson, Inhibitory cerebello-olivary projections and blocking effect in classical conditioning. Science 279, 570–573 (1998)

    Article  Google Scholar 

  25. T.D. Kozai, Z. Du, Z.V. Gugel, M.A. Smith, S.M. Chase, L.M. Bodily, E.M. Caparosa, R.M. Friedlander, X.T. Cui, Comprehensive chronic laminar single-unit, multi-unit, and local field potential recording performance with planar single shank electrode arrays. J. Neurosci. Methods 242, 15–40 (2015)

    Article  Google Scholar 

  26. D.G. Lavond, J.J. Kim, R.F. Thompson, Mammalian brain substrates of aversive classical conditioning. Ann. Rev. Psychol. 44, 317–342 (1993)

    Article  Google Scholar 

  27. D.G. Lavond, Role of the nuclei in eyeblink conditioning. Ann. NY Acad. Sci. 978, 93–105 (2002)

    Article  Google Scholar 

  28. S. Marom, R. Meir, E. Braun, A. Gal, E. Kermany, D. Eytan, On the precarious path of reverse neuro-engineering. Front Comput. Neurosci. 4(3), 5 (2009)

    Google Scholar 

  29. A. Mathy, S.S.N. Ho, J.T. Davie, I.C. Duguid, B.A. Clark, M. Hausser, Encoding of oscillations by axonal bursts in inferior olive neurons. Neuron 62, 388–399 (2009)

    Article  Google Scholar 

  30. J.F. Medina, J.C. Repa, M.D. Mauk, J.E. LeDoux, Parallels between cerebellum- and amygdala-dependent conditioning. Nat. Rev. Neurosci. 3, 122–131 (2002)

    Article  Google Scholar 

  31. D. Milardi, A. Cacciola, G. Cutroneo, S. Marino, M. Irrera, G. Cacciola, G. Santoro, P. Ciolli, G. Anastasi, R.S. CalabrĂ², A. Quartarone, Red nucleus connectivity as revealed by constrained spherical deconvolution tractography. Neurosci. Lett. 626, 68–73 (2016)

    Article  Google Scholar 

  32. M. Moscovitch, R. Cabeza, G. Winocur, L. Nadel, Episodic memory and beyond: the hippocampus and neocortex in transformation. Ann. Rev. Psychol. 67, 105–134 (2016)

    Article  Google Scholar 

  33. R.F. Potter, D.G. Ruegg, M. Wiesendanger, Responses of neurones of the pontine nuclei to stimulation of the sensorimotor, visual and auditory cortex of rats. Brain Res. Bull. 3, 15–19 (1978)

    Article  Google Scholar 

  34. R. Prueckl, A.H. Taub, I. Herreros, R. Hogri, A. Magal, S.A. Bamford, A. Giovannucci, R.O. Almog, Y. Shacham-Diamand, P.F. Verschure, M. Mintz, Behavioral rehabilitation of the eye closure reflex in senescent rats using a real-time biosignal acquisition system, in 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2011), pp. 4211–4214

    Google Scholar 

  35. R.F. Rogers, G.B. Britton, J.E. Steinmetz, Learning-related interpositus activity is conserved across species as studied during eyeblink conditioning in the rat. Brain Res. 905, 171–177 (2001)

    Article  Google Scholar 

  36. P.A. Salin, R.G. Malenka, A. Roger, Cyclic AMP mediates a presynaptic form of LTP at cerebellar parallel fiber synapses. Neuron 16, 79–803 (1996)

    Article  Google Scholar 

  37. L.L. Sears, J.E. Steinmetz, Dorsal accessory inferior olive activity diminishes during acquisition of the rabbit classically conditioned eyelid response. Brain Res. 545, 114–122 (1991)

    Article  Google Scholar 

  38. C.J. Stoodley, J.D. Schmahmann, Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex 46, 831–844 (2010)

    Article  Google Scholar 

  39. A.H. Taub, M. Mintz, Amygdala conditioning modulates sensory input to the cerebellum. Neurobiol. Learn. Mem. 94, 521–529 (2010)

    Article  Google Scholar 

  40. A.H. Taub, E. Segalis, M. Marcus-Kalish, M. Mintz, Acceleration of cerebellar conditioning through improved detection of its sensory input. BCI 1, 5–16 (2014)

    Google Scholar 

  41. R.F. Thompson, J.E. Steinmetz, The role of the cerebellum in classical conditioning of discrete behavioral responses. Neuroscience 162, 732–755 (2009)

    Article  Google Scholar 

  42. P.F. Verschure, M. Mintz, A real-time model of the cerebellar circuitry underlying classical conditioning: a combined simulation and robotics study. Neurocomputing 38, 1019–1024 (2001)

    Article  Google Scholar 

  43. T.C. Watson, M.W. Jones, R. Apps, Electrophysiological mapping of novel prefrontal–cerebellar pathways. Front Integr. Neurosci. 3, 18 (2009)

    Article  Google Scholar 

  44. L. Witter, C.B. Canto, T.M. Hoogland, J.R. De Gruijl, C.I. De Zeeuw, Strength and timing of motor responses mediated by rebound firing in the cerebellar nuclei after purkinje cell activation. Front Neural Circuits 7, 133 (2013)

    Article  Google Scholar 

  45. C.H. Yeo, M.J. Hardiman, M. Glickstein, Discrete lesions of the cerebellar cortex abolish the classically conditioned nictitating membrane response of the rabbit. Behav. Brain Res. 13(3), 261–266 (1984)

    Article  Google Scholar 

  46. C.H. Yeo, M.J. Hardiman, M. Glickstein, Classical conditioning of the nictitating membrane response of the rabbit. II. Lesions of the cerebellar cortex. Exp. Brain Res. 60, 99–113 (1985)

    Article  Google Scholar 

  47. C.H. Yeo, G. Hesslow, Cerebellum and conditioned reflexes. Trends Cogn. Sci. 2, 322–330 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

The research involving the cerebellar neuroprosthesis received funding from the European Community’s Seventh Framework Program (FP7) under grant agreement #216809 to P.D.G. and M.M.; the Converging Technologies (ISF) research grant #1709/07, and ISF grant #390/12 to M.M.; and the Dan David Prize Scholarship and the Michael Myslobodsky Foundation to R.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matti Mintz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Hogri, R., Bamford, S.A., Giudice, P.D., Mintz, M. (2017). Recovery of Brain Function by Neuroprostheses: A Challenge for Neuroscience and Technology. In: Guger, C., Allison, B., Ushiba, J. (eds) Brain-Computer Interface Research. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-57132-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57132-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57131-7

  • Online ISBN: 978-3-319-57132-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics