Abstract
Digital signatures, with the properties of data integrity and authenticity authentication, protect a signed message from any alteration. However, appropriate alteration of signed message should be allowed for the purposes of privacy protection or bandwidth saving in some scenarios, such as medical record or official information disclosure. Redactable signatures, a branch of homomorphic signatures for editing, allow any redactor to remove some submessage blocks from an originally signed message and generate a valid signature on the modified message without any help of the original signer. In this paper, we present a new design of redactable signature scheme with submessage redaction control structure. This scheme has the security properties of unforgeability, privacy, and transparency, which are formally defined and proved. Compared with state-of-the-art redactable signature schemes, our scheme is more efficient in communication and computation cost.
Similar content being viewed by others
References
Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)
Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)
Miyazaki, K., Susaki, S., Iwamura, M., Matsumoto, T., Sasaki, R., Yoshiura, H.: Digital documents sanitizing problem. Inst. Electron. Inf. Commun. Eng. Tech. Rep. 103(195), 61–67 (2003)
Rivest, R.L.: Two signature schemes. Talk given at Cambridge University, 17 October 2000. http://people.csail.mit.edu/rivest/pubs.html
Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Heidelberg (2002). doi:10.1007/3-540-45760-7_17
Becker, G.: Merkle signature schemes, merkle trees and their cryptanalysis. Ruhr-University Bochum, Technical report (2008)
Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM (JACM) 33(4), 792–807 (1986)
Derler, D., Hanser, C., Slamanig, D.: Revisiting cryptographic accumulators, additional properties and relations to other primitives. In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 127–144. Springer, Cham (2015). doi:10.1007/978-3-319-16715-2_7
Steinfeld, R., Bull, L., Zheng, Y.: Content extraction signatures. In: Kim, K. (ed.) ICISC 2001. LNCS, vol. 2288, pp. 285–304. Springer, Heidelberg (2002). doi:10.1007/3-540-45861-1_22
Ateniese, G., Chou, D.H., Medeiros, B., Tsudik, G.: Sanitizable signatures. In: Vimercati, S.C., Syverson, P., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 159–177. Springer, Heidelberg (2005). doi:10.1007/11555827_10
Miyazaki, K., Iwamura, M., Matsumoto, T., et al.: Digitally signed document sanitizing scheme with disclosure condition control. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 88(1), 239–246 (2005)
Miyazaki, K., Hanaoka, G., Imai, H.: Digitally signed document sanitizing scheme based on bilinear maps. In: Proceedings of the 2006 ACM Symposium on Information, Computer and Communications Security, pp. 343–354. ACM (2006)
Pohls, H.C., Samelin, K., Posegga, J., et al.: Length-hiding redactable signatures from one-way accumulators in O(n). Technical report MIP-1201, Faculty of Computer Science and Mathematics (FIM), University of Passau (2012)
Derler, D., Pöhls, H.C., Samelin, K., Slamanig, D.: A general framework for redactable signatures and new constructions. In: Kwon, S., Yun, A. (eds.) ICISC 2015. LNCS, vol. 9558, pp. 3–19. Springer, Cham (2016). doi:10.1007/978-3-319-30840-1_1
Chang, E.-C., Lim, C.L., Xu, J.: Short redactable signatures using random trees. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 133–147. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00862-7_9
Brzuska, C., et al.: Redactable signatures for tree-structured data: definitions and constructions. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 87–104. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13708-2_6
Kundu, A., Bertino, E.: How to authenticate graphs without leaking. In: Proceedings of the 13th International Conference on Extending Database Technology, pp. 609–620. ACM (2010)
Kundu, A., Bertino, E.: Privacy-preserving authentication of trees and graphs. Int. J. Inf. Secur. 12(6), 467–494 (2013)
Meer, H., Pöhls, H.C., Posegga, J., Samelin, K.: On the relation between redactable and sanitizable signature schemes. In: Jürjens, J., Piessens, F., Bielova, N. (eds.) ESSoS 2014. LNCS, vol. 8364, pp. 113–130. Springer, Cham (2014). doi:10.1007/978-3-319-04897-0_8
Slamanig, D., Derler, D., Hanser, C., et al. (TUG): Overview of Functional and Malleable Signature Schemes (2015)
Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001). doi:10.1007/3-540-45682-1_30
Eastlake 3rd, D., Jones, P.: US secure hash algorithm 1 (SHA1) (2001)
Dang, Q.H.: Secure hash standard. National Institute of Standards and Technology, Gaithersburg, MD, Technical report, August 2015
Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and Communications Security, pp. 62–73. ACM (1993)
Benaloh, J., Mare, M.: One-way accumulators: a decentralized alternative to digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 274–285. Springer, Heidelberg (1994). doi:10.1007/3-540-48285-7_24
Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 480–494. Springer, Heidelberg (1997). doi:10.1007/3-540-69053-0_33
Acknowledgment
This work is supported by National Natural Science Foundation of China (61472083, 61402110), Program for New Century Excellent Talents in Fujian University (JA14067), Distinguished Young Scholars Fund of Fujian (2016J06013), and Fujian Normal University Innovative Research Team (No. IRTL1207).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Ma, J., Liu, J., Wang, M., Wu, W. (2017). An Efficient and Secure Design of Redactable Signature Scheme with Redaction Condition Control. In: Au, M., Castiglione, A., Choo, KK., Palmieri, F., Li, KC. (eds) Green, Pervasive, and Cloud Computing. GPC 2017. Lecture Notes in Computer Science(), vol 10232. Springer, Cham. https://doi.org/10.1007/978-3-319-57186-7_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-57186-7_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-57185-0
Online ISBN: 978-3-319-57186-7
eBook Packages: Computer ScienceComputer Science (R0)