Abstract
Separation of organic and inorganic waste for daily need is one of efforts to yield sanitation. However, most people have difficulties to distinguish these kind of waste. Therefore this paper propose a system that can recognize organic and inorganic waste automatically. These system is developed using hybrid PSO-BPNN algorithm to recognize type of waste. Input data is organic and inorganic image which is captured around campus. This paper also presents comparison of BPNN, PSO and PSO-BPNN in recognizing type of waste. The results show that each algorithm achieves 77%, 69% and 95% for BPNN, PSO and hybrid PSO-BPNN respectively.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Hartono, R.: Penanganan dan Pengolahan Sampah. Penebar Swadaya, Jakarta (2008)
Sejati, K.: Pengolahan Sampah Terpadu dengan Sistem Node, Sub Point dan Center Point. Kanisius, Yogyakarta (2009)
Huang, J., Pretz, T.. Bian, Z.: Intelligent solid waste processing using optical sensor based sorting technology. In: International Congress on Image and Signal Processing (CISP 2010), pp. 1657–1661 (2010)
Torres-GarcÃa, A., Rodea-Aragón, O., Longoria-Gandara, O., Sánchez-GarcÃa, F., González-Jiménez, L.E.: Intelligent waste separator. Computación y Sistemas 19(3), 487–500 (2015)
Payganeh, G., Khajavi, M.N., Ebrahimpour, R., Babaei, E.: Machine fault diagnosis using MLPs and RBF neural networks. In: Applied Mechanics and Materials, pp. 5021–5028 (2012)
Zhao, K., Wang, C., Hu, J., Yang, X., Wang, H., Li, F., Zhang, X., Zhang, J., Wang, X.: Prostate cancer identification: quantitative analysis of T2-weighted MR images based on a back propagation artificial neural network model. Sci. China Life Sci. 58, 666–673 (2015)
Hosom, J.-P., Vermeulen, P.J., Shaw, J.: Speaker verification and identification using artificial neural network-based sub-phonetic unit discrimination. United States Patent US 9230550 B2 (2016)
Roman, A.J., Kreitzer, P.J., Ervin, J.S., Hanchak, M.S., Byyd, L.W.: Flow pattern identification of horizontal two-phase refrigerant flow using neural networks. Int. Commun. Heat Mass Transf. 71, 254–264 (2016)
Puscasu, G., Palade, V., Stancu, A., Buduleanu, S., Nastase, G.: Sisteme de Conducere Clasice si Inteligente a Proceselor. MATRIX ROM, Bucharest (2000)
Bocaniala, C.D., Palade, V.: Computational intelligence methodologies in fault diagnosis: review and state of the art. In: Palade, V., Jain, L., Bocaniala, C.D. (eds.) Advanced Information and Knowledge Processing, pp. 1–36. Springer, London (2006)
Nawi, N.M., Khan, Abdullah, Rehman, M.Z.: A new back-propagation neural network optimized with cuckoo search algorithm. In: Murgante, B., et al. (eds.) ICCSA 2013. LNCS, vol. 7971, pp. 413–426. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39637-3_33
Zhao, H.-B., Yin, S.: Geomechanical parameters identification by particle swarm optimization and support vector machine. Appl. Math. Modell. 33(10), 3997–4012 (2009)
Rajendra, R., Pratihar, D.K.: Particle swarm optimization algorithm vs genetic algorithm to develop integrated scheme for obtaining optimal mechanic structure and adaptive controller of a robot. Intell. Control Autom. 2(4), 430–449 (2011)
Sathya, P.D., Kayalvizhi, R.: PSO-based Tsallis thresholding selection procedure for image segmentation. Int. J. Comput. Appl. 5(4), 39–46 (2010)
Kanan, C., Cottrell, G.W.: Color-to-grayscale: does the method matter in image recognition? Plos One 7(1), e29740 (2012)
Shrivakshan, G.T., Chandrasekar, C.: A comparison of various edge detection techniques used in image processing. IJCSI Int. J. Comput. Sci. Issues 9(5), 272–276 (2012)
Bansal, J.C., Singh, P.K., Saraswat, M., Verma, A., Jadon, S.S., Abraham, A.: Inertia weight strategies in particle swarm optimization. dalam: 2011 Third World Congress on Nature and Biologically Inspired Computing (2011)
Kohavi, R., Provost, F.: Glossary of terms: special issue on applications of machine learning and the knowledge discovery proces. Mach. Learn. 30, 271–274 (1998)
Salmador, A., Cid, J.P., Novelle, I.R.: Intelligent garbage classifier. Int. J. Interact. Multimed. Artif. Intell. 1(1), 31–36 (2008)
Acknowledgments
The authors thank to School of Computer Science (SoCS) and Research Technological Transfer Office (RTTO) of Bina Nusantara University, Indonesia for supporting this research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Djaya, C.R.A., Sucianti, N., Randy, Wulandhari, L.A. (2017). Hybrid Particle Swarm Optimization and Backpropagation Neural Network for Organic and Inorganic Waste Recognition. In: Silhavy, R., Senkerik, R., Kominkova Oplatkova, Z., Prokopova, Z., Silhavy, P. (eds) Artificial Intelligence Trends in Intelligent Systems. CSOC 2017. Advances in Intelligent Systems and Computing, vol 573. Springer, Cham. https://doi.org/10.1007/978-3-319-57261-1_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-57261-1_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-57260-4
Online ISBN: 978-3-319-57261-1
eBook Packages: EngineeringEngineering (R0)