Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Hybrid Particle Swarm Optimization and Backpropagation Neural Network for Organic and Inorganic Waste Recognition

  • Conference paper
  • First Online:
Artificial Intelligence Trends in Intelligent Systems (CSOC 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 573))

Included in the following conference series:

Abstract

Separation of organic and inorganic waste for daily need is one of efforts to yield sanitation. However, most people have difficulties to distinguish these kind of waste. Therefore this paper propose a system that can recognize organic and inorganic waste automatically. These system is developed using hybrid PSO-BPNN algorithm to recognize type of waste. Input data is organic and inorganic image which is captured around campus. This paper also presents comparison of BPNN, PSO and PSO-BPNN in recognizing type of waste. The results show that each algorithm achieves 77%, 69% and 95% for BPNN, PSO and hybrid PSO-BPNN respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hartono, R.: Penanganan dan Pengolahan Sampah. Penebar Swadaya, Jakarta (2008)

    Google Scholar 

  2. Sejati, K.: Pengolahan Sampah Terpadu dengan Sistem Node, Sub Point dan Center Point. Kanisius, Yogyakarta (2009)

    Google Scholar 

  3. Huang, J., Pretz, T.. Bian, Z.: Intelligent solid waste processing using optical sensor based sorting technology. In: International Congress on Image and Signal Processing (CISP 2010), pp. 1657–1661 (2010)

    Google Scholar 

  4. Torres-García, A., Rodea-Aragón, O., Longoria-Gandara, O., Sánchez-García, F., González-Jiménez, L.E.: Intelligent waste separator. Computación y Sistemas 19(3), 487–500 (2015)

    Article  Google Scholar 

  5. Payganeh, G., Khajavi, M.N., Ebrahimpour, R., Babaei, E.: Machine fault diagnosis using MLPs and RBF neural networks. In: Applied Mechanics and Materials, pp. 5021–5028 (2012)

    Google Scholar 

  6. Zhao, K., Wang, C., Hu, J., Yang, X., Wang, H., Li, F., Zhang, X., Zhang, J., Wang, X.: Prostate cancer identification: quantitative analysis of T2-weighted MR images based on a back propagation artificial neural network model. Sci. China Life Sci. 58, 666–673 (2015)

    Article  Google Scholar 

  7. Hosom, J.-P., Vermeulen, P.J., Shaw, J.: Speaker verification and identification using artificial neural network-based sub-phonetic unit discrimination. United States Patent US 9230550 B2 (2016)

    Google Scholar 

  8. Roman, A.J., Kreitzer, P.J., Ervin, J.S., Hanchak, M.S., Byyd, L.W.: Flow pattern identification of horizontal two-phase refrigerant flow using neural networks. Int. Commun. Heat Mass Transf. 71, 254–264 (2016)

    Article  Google Scholar 

  9. Puscasu, G., Palade, V., Stancu, A., Buduleanu, S., Nastase, G.: Sisteme de Conducere Clasice si Inteligente a Proceselor. MATRIX ROM, Bucharest (2000)

    Google Scholar 

  10. Bocaniala, C.D., Palade, V.: Computational intelligence methodologies in fault diagnosis: review and state of the art. In: Palade, V., Jain, L., Bocaniala, C.D. (eds.) Advanced Information and Knowledge Processing, pp. 1–36. Springer, London (2006)

    Google Scholar 

  11. Nawi, N.M., Khan, Abdullah, Rehman, M.Z.: A new back-propagation neural network optimized with cuckoo search algorithm. In: Murgante, B., et al. (eds.) ICCSA 2013. LNCS, vol. 7971, pp. 413–426. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39637-3_33

    Chapter  Google Scholar 

  12. Zhao, H.-B., Yin, S.: Geomechanical parameters identification by particle swarm optimization and support vector machine. Appl. Math. Modell. 33(10), 3997–4012 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Rajendra, R., Pratihar, D.K.: Particle swarm optimization algorithm vs genetic algorithm to develop integrated scheme for obtaining optimal mechanic structure and adaptive controller of a robot. Intell. Control Autom. 2(4), 430–449 (2011)

    Article  Google Scholar 

  14. Sathya, P.D., Kayalvizhi, R.: PSO-based Tsallis thresholding selection procedure for image segmentation. Int. J. Comput. Appl. 5(4), 39–46 (2010)

    Google Scholar 

  15. Kanan, C., Cottrell, G.W.: Color-to-grayscale: does the method matter in image recognition? Plos One 7(1), e29740 (2012)

    Article  Google Scholar 

  16. Shrivakshan, G.T., Chandrasekar, C.: A comparison of various edge detection techniques used in image processing. IJCSI Int. J. Comput. Sci. Issues 9(5), 272–276 (2012)

    Google Scholar 

  17. Bansal, J.C., Singh, P.K., Saraswat, M., Verma, A., Jadon, S.S., Abraham, A.: Inertia weight strategies in particle swarm optimization. dalam: 2011 Third World Congress on Nature and Biologically Inspired Computing (2011)

    Google Scholar 

  18. Kohavi, R., Provost, F.: Glossary of terms: special issue on applications of machine learning and the knowledge discovery proces. Mach. Learn. 30, 271–274 (1998)

    Article  Google Scholar 

  19. Salmador, A., Cid, J.P., Novelle, I.R.: Intelligent garbage classifier. Int. J. Interact. Multimed. Artif. Intell. 1(1), 31–36 (2008)

    Google Scholar 

Download references

Acknowledgments

The authors thank to School of Computer Science (SoCS) and Research Technological Transfer Office (RTTO) of Bina Nusantara University, Indonesia for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lili A. Wulandhari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Djaya, C.R.A., Sucianti, N., Randy, Wulandhari, L.A. (2017). Hybrid Particle Swarm Optimization and Backpropagation Neural Network for Organic and Inorganic Waste Recognition. In: Silhavy, R., Senkerik, R., Kominkova Oplatkova, Z., Prokopova, Z., Silhavy, P. (eds) Artificial Intelligence Trends in Intelligent Systems. CSOC 2017. Advances in Intelligent Systems and Computing, vol 573. Springer, Cham. https://doi.org/10.1007/978-3-319-57261-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57261-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57260-4

  • Online ISBN: 978-3-319-57261-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics