Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Reflecting on Imbalance Data Issue When Teaching Performance Measures

  • Conference paper
  • First Online:
Artificial Intelligence Trends in Intelligent Systems (CSOC 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 573))

Included in the following conference series:

Abstract

Importance of soft computing methods has continuously grown for many years. Particularly machine learning methods have been paid considerable attention in the business sphere and subsequently within the general public in the last decade. Machine learning and its implementation is the object of interest of many commercial subjects, whether they are small companies or large corporations. Consequently, well-educated experts in the area of machine learning are highly sought after on the job market. Most of the technical universities around the world have incorporated the machine learning into their curricula. However, machine learning is a dynamically evolving area and the curricula should be continuously updated. This paper is intended to support this process. Namely, an imbalance data issue, in context of performance measures for binary classification, is opened, and a teaching method covering this problem is presented. The method has been primary designed for undergraduate and graduate students of technical fields; however, it can be easily adopted in curricula of other fields of study, e.g. medicine, economics, or social sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    ROC = receiver operating characteristic.

References

  1. Barandela, R., Sánchez, J.S., García, V., Rangel, E.: Strategies for learning in class imbalance problems. Pattern Recogn. 36(3), 849–851 (2003)

    Article  Google Scholar 

  2. Brodersen, K., Ong, C.S., Stephan, K., Buhmann, J.: The balanced accuracy and its posterior distribution. In: 2010 20th International Conference on Pattern Recognition (ICPR), pp. 3121–3124, August 2010

    Google Scholar 

  3. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16(1), 321–357 (2002)

    MATH  Google Scholar 

  4. Choi, S.S., Cha, S.H., Tappert, C.: A survey of binary similarity and distance measures. J. Systemics Cybern. Inform. 8(1), 43–48 (2010)

    Google Scholar 

  5. Daskalaki, S., Kopanas, I., Avouris, N.M.: Evaluation of classifiers for an uneven class distribution problem. Appl. Artif. Intell. 20(5), 381–417 (2006)

    Article  Google Scholar 

  6. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006)

    Article  MathSciNet  Google Scholar 

  7. Flach, P.: Machine Learning: The Art and Science of Algorithms that Make Sense of Data. Cambridge University Press, New York (2012)

    Book  MATH  Google Scholar 

  8. Forman, G., Scholz, M.: Apples-to-apples in cross-validation studies: pitfalls in classier performance measurement. SIGKDD Explor. 12(1), 49–57 (2010)

    Article  Google Scholar 

  9. Garcia, V., Mollineda, R.A., Sanchez, J.S.: Theoretical analysis of a performance measure for imbalanced data. In: 2010 20th International Conference on Pattern Recognition, pp. 617–620. IEEE, August 2010

    Google Scholar 

  10. García, V., Sánchez, J.S., Mollineda, R.A., Alejo, R., Sotoca, J.M.: The class imbalance problem in pattern classification and learning. In: Ferrer-Troyano, F.J., et al. (eds.) II Congreso Español de Informática, pp. 283–291. Thomson, Zaragoza (2007)

    Google Scholar 

  11. Goutte, C., Gaussier, E.: A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. In: Losada, D.E., Fernández-Luna, J.M. (eds.) ECIR 2005. LNCS, vol. 3408, pp. 345–359. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31865-1_25

    Chapter  Google Scholar 

  12. Hand, D.J.: Assessing the performance of classification methods. Int. Stat. Rev. 80(3), 400–414 (2012)

    Article  MathSciNet  Google Scholar 

  13. Hossin, M., Sulaiman, M.: A review on evaluation metrics for data classification evaluations. Int. J. Data Min. Knowl. Manage. Process 5(2), 1–11 (2015)

    Article  Google Scholar 

  14. Japkowicz, N.: Why question machine learning evaluation methods. In: AAAI Workshop on Evaluation Methods for Machine Learning, pp. 6–11 (2006)

    Google Scholar 

  15. Japkowicz, N., Stephen, S.: The class imbalance problem: a systematic study. Intell. Data Anal. 6(5), 429–449 (2002)

    MATH  Google Scholar 

  16. Kotsiantis, S., Pintelas, P.: Mixture of expert agents for handling imbalanced data sets. Ann. Math. Comput. Teleinformatics 1(1), 46–55 (2003)

    Google Scholar 

  17. Kubat, M.: An Introduction to Machine Learning. Springer, Cham (2015)

    Book  MATH  Google Scholar 

  18. Lemnaru, C., Potolea, R.: Imbalanced classification problems: systematic study, issues and best practices. In: Zhang, R., Zhang, J., Zhang, Z., Filipe, J., Cordeiro, J. (eds.) ICEIS 2011. LNBIP, vol. 102, pp. 35–50. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29958-2_3

    Chapter  Google Scholar 

  19. Mani, I., Zhang, I.: kNN approach to unbalanced data distributions: a case study involving information extraction. In: Proceedings of Workshop on Learning from Imbalanced Datasets (2003)

    Google Scholar 

  20. Powers, D.M.W.: Evaluation: From precision, recall and f-measure to ROC, informedness, markedness & correlation. J. Mach. Learn. Technol. 2(1), 37–63 (2011)

    MathSciNet  Google Scholar 

  21. Salzberg, S.L.: On comparing classifiers: a critique of current research and methods. Data Min. Knowl. Disc. 1, 1–12 (1999)

    Google Scholar 

  22. Salzberg, S.L.: On comparing classifiers: pitfalls to avoid and a recommended approach. Data Min. Knowl. Discov. 1(3), 317–328 (1997)

    Article  Google Scholar 

  23. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification tasks. Inf. Process. Manage. 45(4), 427–437 (2009)

    Article  Google Scholar 

  24. Velez, D.R., White, B.C., Motsinger, A.A., Bush, W.S., Ritchie, M.D., Williams, S.M., Moore, J.H.: A balanced accuracy function for epistasis modeling in imbalanced datasets using multifactor dimensionality reduction. Genet. Epidemiol. 31(4), 306–315 (2007)

    Article  Google Scholar 

Download references

Acknowledgement

The work has been supported by the Funds of University of Pardubice, Czech Republic, grant No. SGS-2016-017. This support is very gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Škrabánek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Škrabánek, P., Majerík, F. (2017). Reflecting on Imbalance Data Issue When Teaching Performance Measures. In: Silhavy, R., Senkerik, R., Kominkova Oplatkova, Z., Prokopova, Z., Silhavy, P. (eds) Artificial Intelligence Trends in Intelligent Systems. CSOC 2017. Advances in Intelligent Systems and Computing, vol 573. Springer, Cham. https://doi.org/10.1007/978-3-319-57261-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57261-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57260-4

  • Online ISBN: 978-3-319-57261-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics