Abstract
A fundamental issue in order to define effective methods for ensuring confidentiality is to define privacy models as well as measures for disclosure risk assessment. In this chapter we review the main models and measures.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
This way of proceeding is already discussed in e.g. [29] (p. 408): “Methods that mask the key variables impede identification of the respondent in the file, and methods that mask the target variables limit what is learned if a match is made. Both approaches may be useful, and in practice a precise classification of variables as keys or targets may be difficult. However, masking of targets is more vulnerable to the trade-off between protection gain and information loss than masking of keys; hence masking of keys seems potentially more fruitful”.
- 2.
In databases, the schema define the type of attributes, their types and relationships. They roughly correspond to metadata in statistical disclosure control.
- 3.
A description of hash functions , very common in data structures, can be found e.g. in [74].
- 4.
The discussion of which are the quasi-identifiers for attacking a database is present in e.g. the literature on data protection for graphs and social networks. There are a few competing definitions of k-anonymity for graphs that correspond to different sets of quasi-identifiers. We will discuss them in Sect. 6.4.2 (on algorithms for k-anonymity for big data).
- 5.
There are two main types of methods for anomaly detection: models based on misuses (a database of misuses is used to learn what an anomaly is) and models based on correct activity (the model we learn explains normal activity, and what diverges from the model is classified as an anomaly). The latter approach seems more suitable when data is protected if this process can eliminate outliers, and, thus, the anomalies of a database.
References
Bambauer, J.: Tragedy of the deidentified data commons: an appeal for transparency and access. In: Joint UNECE/Eurostat Work Session on Statistical Data Confidentiality, Ottawa, Canada, 28–30 Oct 2013
Yakowitz, J.: Tragedy of the data commons. Harv. J. Law Technol. 25(1), 1–67 (2011)
Polonetsky, J., Wolf, C., Brennan, M.W.: Comments of the future of privacy forum. Future of Privacy. http://www.futureofprivacy.org/wp-content/uploads/01-17-2014-FPF-Comments-to-the-FCC.pdf (2014)
de Montjoye, Y.-A., Radaelli, L., Singh, V.K., Pentland, A.S.: Unique in the shopping mall: on the reidentifiability of credit card metadata. Science 347, 536–539 (2015)
Jändel, M.: Anonymization of personal data is impossible in practice. Presented in Kistamässan om Samhällssäkerhet (2015)
Barth-Jones, D., El Emam, K., Bambauer, J., Cavoukioan, A., Malin, B.: Assessing data intrusion threats. Science 348, 194–195 (2015)
Sánchez, D., Martínez, S., Domingo-Ferrer, J.: Comment on “Unique in the shopping mall: reidentifiability of credit card metadata”. Science, 18 March 1274-a (2016)
de Montjoye, Y.-A., Pentland, A.S.: Response. Science 348, 195 (2015)
de Montjoye, Y.-A., Pentland, A.S.: Response to Comment on “Unique in the shopping mall: On the reidentifiability of credit card metadata”. Science, 18 March 1274-b (2016)
Cavoukian, A., El Emam, K.: Dispelling the Myths Surrounding De-identification: Anonymization Remains a Strong Tool for Protecting Privacy (2011)
Dalenius, T.: Towards a methodology for statistical disclosure control. Statistisk Tidskrift 5, 429–444 (1977)
Krantz, D.H., Luce, R.D., Suppes, P., Tversky, A.: Foundations of Measurement: Additive and Polynomial Representations, vol. 1. Academic Press, New York (1971)
Luce, R.D., Krantz, D.H., Suppes, P., Tversky, A.: Foundations of Measurement: Representation, Axiomatization, and Invariance, vol. 3. Academic Press, New York (1990)
Roberts, F.S.: Measurement Theory. Addison-Wesley, Reading (1979)
Suppes, P., Krantz, D.H., Luce, R.D., Tversky, A.: Foundations of Measurement: Geometrical, Threshold, and Probability Representations, vol. 2. Academic Press, San Diego (1989)
Dalenius, T.: Finding a needle in a haystack—or identifying anonymous census records. J. Off. Stat. 2(3), 329–336 (1986)
Domingo-Ferrer, J., Mateo-Sanz, J.M., Torra, V.: Comparing SDC methods for microdata on the basis of information loss and disclosure risk. In: Pre-proceedings of ETK-NTTS 2001, vol. 2, pp. 807–826. Eurostat (2001)
Domingo-Ferrer, J., Torra, V.: A quantitative comparison of disclosure control methods for microdata. In: Doyle, P., Lane, J.I., Theeuwes, J.J.M., Zayatz, L. (eds.) Confidentiality, Disclosure and Data Access: Theory and Practical Applications for Statistical Agencies, pp. 111–134. North-Holland, Amsterdam (2001)
Mateo-Sanz, J.M., Sebé, F., Domingo-Ferrer, J.: Outlier protection in continuous microdata masking. In: PSD 2004. LNCS, vol. 3050, pp. 201–215 (2004)
Templ, M.: Statistical disclosure control for microdata using the R-Package sdcMicro. Trans. Data Priv. 1, 67–85 (2008)
Nin, J., Herranz, J., Torra, V.: Using classification methods to evaluate attribute disclosure risk. In: Proceedings of the MDAI 2010. LNCS, vol. 6408, pp. 277–286 (2010)
Herranz, J., Matwin, S., Nin, J., Torra, V.: Classifying data from protected statistical datasets. Comput. Secur. 29, 875–890 (2010)
Hall, M., Frank, E., Holmes, G., Pfahringer, G., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. 11, 1 (2009)
Balsa, E., Troncoso, C., Díaz, C.: A metric to evaluate interaction obfuscation in online social networks. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 20, 877–892 (2012)
Muralidhar, M., Sarathy, R.: Statistical dependence as the basis for a privacy measure for microdata release. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 20, 893–906 (2012)
Sweeney, L.: \(k\)-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 10(5), 557–570 (2002)
Torra, V., Abowd, J.M., Domingo-Ferrer, J.: Using mahalanobis distance-based record linkage for disclosure risk assessment. LNCS, vol. 4302, pp. 233–242 (2006)
Samarati, P.: Protecting respondents’ identities in microdata release. IEEE Trans. Knowl. Data Eng. 13(6), 1010–1027 (2001)
Little, R.J.A.: Statistical analysis of masked data. J. Off. Stat. 9(2), 407–426 (1993)
Nin, J., Herranz, J., Torra, V.: Rethinking rank swapping to decrease disclosure risk. Data Knowl. Eng. 64(1), 346–364 (2007)
Torra, V.: OWA operators in data modeling and reidentification. IEEE Trans. Fuzzy Syst. 12(5), 652–660 (2004)
Domingo-Ferrer, J., Torra, V.: Disclosure risk assessment in statistical microdata protection via advanced record linkage. Stat. Comput. 13, 343–354 (2003)
Spruill, N.L.: The confidentiality and analytic usefulness of masked business microdata. In: Proceedings of the Section on Survey Research Methods 1983, pp. 602–610, American Statistical Association (1983)
Paass, G.: Disclosure risk and disclosure avoidance for microdata. J. Bus. Econ. Stat. 6, 487–500 (1985)
Paass, G., Wauschkuhn, U.: Datenzugang, Datenschutz und Anonymisierung—Analysepotential und Identifizierbarkeit von Anonymisierten Individualdaten. Oldenbourg Verlag (1985)
Willenborg, L., de Waal, T.: Elements of Statistical Disclosure Control. Lecture Notes in Statistics. Springer, New York (2001)
Elliot, M.J., Manning, A.M., Ford, R.W.: A computational algorithm for handling the special uniques problem. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 10(5), 493–509 (2002)
Manning, A.M., Haglin, D.J., Keaner, J.A.: A recursive search algorithm for statistical disclosure assessment. Data Min. Knowl. Disc. 16, 165–196 (2008)
Elliot, M.J., Skinner, C.J., Dale, A.: Special uniqueness, random uniques and sticky populations: some counterintuitive effects of geographical detail on disclosure risk. Res. Off. Stat. 1(2), 53–67 (1998)
Elamir, E.A.H.: Analysis of re-identification risk based on log-linear models. In: Proceedings of the PSD 2004. LNCS, vol. 3050, pp. 273–281 (2004)
Elliot, M.: Integrating file and record level disclosure risk assessment. In: Domingo-Ferrer, J. (ed.) Inference Control in Statistical Databases. LNCS, vol. 2316, pp. 126–134 (2002)
Franconi, L., Polettini, S.: Individual risk estimation in \(\mu \)-argus: a review. In: PSD 2004. LNCS, vol. 3050, pp. 262–272 (2004)
Winkler, W.E.: Re-identification methods for masked microdata. In: Proceedings of PSD 2004. LNCS, vol. 3050, pp. 216–230 (2004)
Bacher, J., Brand, R., Bender, S.: Re-identifying register data by survey data using cluster analysis: an empirical study. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 10(5), 589–607 (2002)
Herranz, J., Nin, J., Rodríguez, P., Tassa, T.: Revisiting distance-based record linkage for privacy-preserving release of statistical datasets. Data Knowl. Eng. 100, 78–93 (2015)
Lenz, R.: A graph theoretical approach to record linkage. In: Joint ECE/Eurostat Work Session on Statistical Data Confidentiality, Working Paper no. 35 (2003)
Scannapieco, M., Cibella, N., Tosco, L., Tuoto, T., Valentino, L., Fortini, M., Mancini, L.: Relais (REcord Linkage At IStat): user’s guide. http://www.istat.it/en/tools/methods-and-it-tools/processing-tools/relais (2015)
Torra, V., Miyamoto, S.: Evaluating fuzzy clustering algorithms for microdata protection. In: Proceedings of PSD 2004. LNCS, vol. 3050, pp. 175–186 (2004)
Nin, J., Torra, V.: Analysis of the univariate microaggregation disclosure risk. New Gener. Comput. 27, 177–194 (2009)
Nin, J., Herranz, J., Torra, V.: On the disclosure risk of multivariate microaggregation. Data Knowl. Eng. 67(3), 399–412 (2008)
Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse datasets. In: Proceedings of the 2008 IEEE Symposium on Security and Privacy (SP 2008), pp. 111–125 (2008)
Martínez, S., Valls, A., Sánchez, D.: An ontology-based record linkage method for textual microdata. In: Artificial Intelligence Research and Development, vol. 232, pp. 130-139. IOS Press (2011)
Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques, 3rd edn. Morgan Kaufmann Publishers, San Francisco (2011)
Rahm, E., Do, H.-H.: Data cleaning: problems and current approaches. Bull. IEEE Comput. Soci. Techn. Committee Data Eng. 23(4), 3–13 (2000)
International Classification of Diseases (ICD), 10-th revision. http://www.who.int/classifications/icd/en/. Accessed Jan 2017
Gaines, B.R., Shaw, M.L.G.: Knowledge acquisition tools based on personal construct psychology. Knowl. Eng. Rev. 8, 49–85 (1993)
Torra, V.: Towards the re-identification of individuals in data files with non-common variables. In: Proceedings of ECAI 2000, pp. 326–330 (2000)
Boose, J.H.: Expertise Transfer for Expert System Design. Elsevier, New York (1986)
Christen, P.: Data Matching—Concepts and Techniques for Record Linkage, Entity Resolution, and Duplicate Detection. Springer, Heidelberg (2012)
Torra, V., Narukawa, Y.: Modeling decisions: information fusion and aggregation operators. Springer, Heidelberg (2007)
Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2013)
Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges. IEEE Trans. Knowl. Data Eng. 25(1), 158–176 (2013)
Bergamaschi, S., Castano, S., Vincini, M., Beneventano, D.: Semantic integration of heterogeneous information sources. Data Knowl. Eng. 36(3), 215–249 (2001)
Do, H.-H., Rahm, E.: COMA—a system for flexible combination of schema matching approaches. In: Proceedings of VLDB, pp. 610-621 (2002)
Embley, D.W., Jackman, D., Xu, L.: Multifaceted Exploitation of Metadata for Attribute Match Discovery in Information Integration (2001)
Princeton University: “About WordNet”. WordNet. Princeton University. http://wordnet.princeton.edu (2010). Accessed Jan 2017
Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB J. 10, 334–350 (2001)
Haas, L.M., Miller, R.J., Niswonger, B., Tork Roth, M., Schwarz, P.M., Wimmers, E.L.: Transforming heterogeneous data with database middleware: beyond integration. Bull. IEEE Comput. Soci. Techn. Committee Data Eng. 22, 31–36 (1999)
Borkar, V., Deshmukh, K., Sarawagi, S.: Automatic segmentation of text into structured records. In: Proceedings of ACM SIGMOD Conference (2001)
Churches, T., Christen, P., Lim, K., Zhu, J.X.: Preparation of name and address data for record linkage using hidden Markov models. BMC Med. Inform. Decis. Making 2, 9 (2002)
Li, W.-S., Clifton, C.: SEMINT: a tool for identifying attribute correspondences in heterogeneous databases using neural networks. Data Knowl. Eng. 33, 49–84 (2000)
Winkler, W.E.: Matching and record linkage. Statistical Research Division, U.S. Bureau of the Census (USA), RR93/08 (1993). Also in B.G. Cox (ed.) Business Survey Methods, pp. 355–384. Wiley (1995)
Steorts, R.C., Ventura, S.L., Sadinle, M., Fienberg, S.E.: A comparison of blocking methods for record linkage. In: PSD 2014. LNCS, vol. 8744, pp. 253–268 (2014)
Aho, A.V., Ullman, J.D., Hopcroft, J.E.: Data Structures and Algorithms. Addison-Wesley, Reading (1988)
Christen, P.: A survey of indexing techniques for scalable record linkage and deduplication. IEEE Trans. Knowl. Data Eng. 24, 1537–1555 (2012)
Nin, J., Muntés-Mulero, V., Martínez-Bazan, N., Larriba-Pey, J.-L.: On the use of semantic blocking techniques for data cleansing and integration. In: Proceedings of IDEAS 2007, pp. 190–198 (2007)
Michelson, M., Knoblock, C.A.: Learning blocking schemes for record linkage. In: AAAI (2006)
Searcóid, M.O.: Metric Spaces. Springer, London (2007)
Salari, M., Jalili, S., Mortazavi, R.: TBM, a transformation based method for microaggregation of large volume mixed data. Data Min. Knowl. Disc. (2016, in press). doi:10.1007/s10618-016-0457-y
Navarro, G.: A guided tour to approximate string matching. ACM Comput. Surv. 33(1), 31–88 (2001)
Stephen, G.A.: String Searching Algorithms. World Scientific Publishing Co., Singapore (1994)
Odell, M.K., Russell, R.C.: U. S. Patents 1261167 (1918)
Odell, M.K., Russell, R.C.: U. S. Patents 1435663 (1922)
Knuth, D.E.: The Art of Computer Programming: Sorting and Searching, vol. 3. Addison-Wesley, Reading (1973)
Jaro, M.A.: Advances in record-linkage methodology as applied to matching the 1985 Census of Tampa, Florida. J. Am. Stat. Assoc. 84(406), 414–420 (1989)
Newcombe, H.B.: Record linking: the design of efficient systems for linking records into individuals and family histories. Am. J. Hum. Genet. 19 Part I(3) (1967)
Blair, C.R.: A program for correcting spelling errors. Inf. Control 3(1), 60–67 (1960)
Jaro, M.A.: UNIMATCH: a record linkage system: user’s manual. U.S, Bureau of the Census, Washington DC (1978)
Porter, E.H., Winkler, W.E.: Approximate string comparison and its effect on an advanced record linkage system. Report RR97/02, Statistical Research Division, U.S. Bureau of the Census, USA (1997)
This link is currently outdated. http://www.census.gov/geo/msb/stand/strcmp.c. Code, http://www.perlmonks.org/?node=659795, https://people.rit.edu/rmb5229/320/project3/jaro_winkler.html
Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals, Doklady Academii nauk SSSR 163(4), 845–848 (1965) (in Russian). (Also in Cybern. Control Theor. 10(8), 707–710 (1966))
Cohen, W.W., Ravikumar, P., Fienberg, S.E.: A comparison of string metrics for matching names and records. In: Proceedings of the KDD 2003 (2003)
Herranz, J., Nin, J., Solé, M.: Optimal Symbol Alignment distance: a new distance for sequences of symbols. IEEE Trans. Knowl. Data Eng. 23(10), 1541–1554 (2011)
Muralidhar, K., Domingo-Ferrer, J.: Rank-based record linkage for re-identification risk assessment. In: Proceedings of PSD 2016 (2016)
Torra, V., Domingo-Ferrer, J.: Record linkage methods for multidatabase data mining. In: Torra, V. (ed.) Information Fusion in Data Mining, pp. 101–132. Springer, Heidelberg (2003)
Fellegi, I.P., Sunter, A.B.: A theory for record linkage. J. Am. Stat. Assoc. 64(328), 1183–1210 (1969)
Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. 39, 1–38 (1977)
Domingo-Ferrer, J., Torra, V.: Validating distance-based record linkage with probabilistic record linkage. LNCS, vol. 2504, pp. 207–215 (2002)
Newcombe, H.B., Kennedy, J.M., Axford, S.L., James, A.P.: Automatic linkage of vital records. Science 130, 954 (1959)
Winkler, W.E.: Methods for Record Linkage and Bayesian Networks, Bureau of the Census (USA), RR2002/05 (2002)
Larsen, M.D., Rubin, D.B.: Iterative automated record linkage using mixture models. J. Am. Stat. Assoc. 79, 32–41 (2001)
Winkler, W.E.: Improved decision rules in the Fellegi-Sunter model of record linkage, pp. 274–279. In: Proceedings of the Section on Survey Research Methods. American Statistical Association (1993)
Tromp, M., Méray, N., Ravelli, A.C.J., Reitsma, J.B., Bonsel, G.J.: Ignoring dependency between linking variables and its impact on the outcome of probabilistic record linkage studies. J. Am. Med. Inform. Assoc. 15(5), 654–660 (2008)
Daggy, J.K., Xu, H., Hui, S.L., Gamache, R.E., Grannis, S.J.: A practical approach for incorporating dependence among fields in probabilistic record linkage. BMC Med. Inform. Decis. Making 13, 97 (2013)
Herzog, T.N., Scheuren, F.J., Winkler, W.E.: Data Quality and Record Linkage Techniques. Springer, New York (2007)
Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: a survey. IEEE Trans. Knowl. Data Eng. 19(1), 1–16 (2007)
https://www.cs.cmu.edu/~wcohen/matching/. Accessed Jan 2017
Winkler, W.E.: Overview of record linkage and current research directions, U.S. Census Bureau RR2006/02 (2006)
Vatsalan, D., Christen, P., Verykios, V.S.: A taxonomy of privacy-preserving record linkage techniques. Inf. Syst. 38, 946–969 (2013)
Pagliuca, D., Seri, G.: Some results of individual ranking method on the system of enterprise accounts annual survey. Esprit SDC Project, Deliverable MI-3/D2 (1999)
Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners. Springer, Heidelberg (2007)
Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions. In: Encyclopedia of Mathematics and its Applications, No. 127. Cambridge University Press (2009)
Abril, D., Navarro-Arribas, G., Torra, V.: Improving record linkage with supervised learning for disclosure risk assessment. Inf. Fusion 13(4), 274–284 (2012)
Torra, V., Navarro-Arribas, G., Abril, D.: Supervised learning for record linkage through weighted means and OWA operators. Control Cybern. 39(4), 1011–1026 (2010)
Abril, D., Navarro-Arribas, G., Torra, V.: Choquet Integral for Record Linkage. Ann. Oper. Res. 195, 97–110 (2012)
Abril, D., Navarro-Arribas, G., Torra, V.: Supervised learning using a symmetric bilinear form for record linkage. Inf. Fusion 26, 144–153 (2016)
IBM ILOG CPLEX: High-performance mathematical programming engine. International business machines corp. http://www-01.ibm.com/software/integration/optimization/cplex/ (2010)
Neumann, D.A., Norton Jr., V.T.: Clustering and isolation in the consensus problem for partitions. J. Classif. 3, 281–297 (1986)
Samarati, P., Sweeney, L.: Protecting privacy when disclosing information: \(k\)-anonymity and its enforcement through generalization and suppression. Technical report, SRI International (1998)
Sweeney, L.: Achieving \(k\)-anonymity privacy protection using generalization and suppression. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 10(5), 571–588 (2002)
Tendick, P., Matloff, N.: A modified random perturbation method for database security. ACM Trans. Database Syst. 19, 47–63 (1994)
Stokes, K., Torra, V.: n-Confusion: a generalization of k-anonymity. In: Proceedings of the Fifth International Workshop on Privacy and Anonymity on Information Society (PAIS 2012) (2012)
Stokes, K., Farràs, O.: Linear spaces and transversal designs: \(k\)-anonymous combinatorial configurations for anonymous database search. Des. Codes Cryptogr. 71, 503–524 (2014)
Tassa, T., Mazza, A., Gionis, A.: k-Concealment: an alternative model of k-Type anonymity. Trans. Data Priv. 5(1), 189–222 (2012)
Soria-Comas, J., Domingo-Ferrer, J.: Probabilistic k-anonymity through microaggregation and data swapping. FUZZ-IEEE 2012, 1–8 (2012)
Gehrke, J., Hay, M., Lui, E., Pass, R.: Crowd-blending privacy. In: 32nd International Cryptology Conference (CRYPTO 2012) (2012)
Gionis, A., Mazza, A., Tassa, T.: k-anonymization revisited. In: Proceedings of ICDE 2008 (2008)
Capitani, D., di Vimercati, S., Foresti, S., Livraga, G., Samarati, P.: Data privacy: definitions and techniques. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 20(6), 793–817 (2012)
Truta, T.M., Vinay, B.: Privacy protection: p-sensitive k-anonymity property. In: Proceedings of the 2nd International Workshop on Privacy Data management (PDM 2006), p. 94 (2006)
Truta, T.M., Campan, A., Sun, X.: an overview of p-sensitive k-anonymity models for microdata anonymization. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 20(6), 819–838 (2012)
Machanavajjhala, A., Gehrke, J., Kiefer, D., Venkitasubramanian, M.: L-diversity: privacy beyond k-anonymity. In: Proceedings of the IEEE ICDE (2006)
Li, N., Li, T., Venkatasubramanian, S.: T-closeness: privacy beyond k-anonymity and l-diversity. In: Proceedings of the IEEE ICDE 2007 (2007)
Fung, B.C.M., Wang, K., Yu, P.S.: Top-down specialization for information and privacy preservation. In: Proceedings of ICDR 2005 (2005)
Stokes, K.: On computational anonymity. In: Proceedings of PSD 2012. LNCS, vol. 7556, pp. 336–347 (2012)
Stokes, K., Torra, V.: Reidentification and k-anonymity: a model for disclosure risk in graphs. Soft Comput. 16(10), 1657–1670 (2012)
Torra, V.: Towards the formalization of re-identification for some data masking methods. In: Proceedings of CCIA 2012, pp. 47–55 (2012)
Torra, V., Stokes, K.: A formalization of re-identification in terms of compatible probabilities, CoRR abs/1301.5022 (2013)
Torra, V., Stokes, K.: A formalization of record linkage and its application to data protection. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 20, 907–919 (2012)
Kosinski, M., Stillwell, D., Graepel, T.: Private traits and attributes are predictable from digital records of human behavior. PNAS 110, 5802–5805 (2013)
Kifer, D., Machanavajjhala, A.: No free lunch in data privacy. In: Proceedings of SIGMOD 2011 (2011)
Stokes, K., Torra, V.: Multiple releases of k-anonymous data sets and k-anonymous relational databases. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 20(6), 839–854 (2012)
Pei, J., Xu, J., Wang, Z., Wang, W., Wang, K.: Maintaining k-anonymity against incremental updates. In: Proceedings of SSDBM (2007)
Truta, T.M., Campan, A.: K-anonymization incremental maintenance and optimization techniques. In: Proceedings of ACM SAC 2007, pp. 380–387 (2007)
Nergiz, M.E., Clifton, C., Nergiz, A.E.: Multirelational k-anonymity. IEEE Trans. Knowl. Data Eng. 21(8), 1104–1117 (2009)
Navarro-Arribas, G., Abril, D., Torra, V.: Dynamic anonymous index for confidential data. In: Proceedings of 8th DPM and SETOP, pp. 362-368 (2013)
D’Acquisto, G., Domingo-Ferrer, J., Kikiras, P., Torra, V., de Montjoye, Y.-A., Bourka, A.: Privacy by design in big data: An overview of privacy enhancing technologies in the era of big data analytics. ENISA Report (2015)
Estivill-Castro, V., Nettleton, D.F.: Privacy Tips: Would it be ever possible to empower online social-network users to control the confidentiality of their data? In: Proceedings of ASONAM 2015, pp. 1449–1456 (2015)
Soria-Comas, J., Domingo-Ferrer, J.: Big data privacy: challenges to privacy principles and models. Data Sci. Eng. 1(1), 21–28 (2016)
Torra, V., Navarro-Arribas, G.: Big data privacy and anonymization. In: Lehmann, A., Whitehouse, D., Fischer-Hübner, S., Fritsch, L.: Privacy and identity management—facing up to next steps. Springer (2017, in press)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this chapter
Cite this chapter
Torra, V. (2017). Privacy Models and Disclosure Risk Measures. In: Data Privacy: Foundations, New Developments and the Big Data Challenge. Studies in Big Data, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-319-57358-8_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-57358-8_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-57356-4
Online ISBN: 978-3-319-57358-8
eBook Packages: EngineeringEngineering (R0)