Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Using Network Flows to Identify Users Sharing Extremist Content on Social Media

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10234))

Included in the following conference series:

Abstract

Social media has been leveraged by many groups to share their ideas, ideology, and other messages. Some of these posts promote extremist ideology. In this paper, we propose an approach for identifying users who engage in extremist discussions online. Our approach uses detailed feature selection to identify relevant posts and then uses a novel weighted network that models the information flow between the publishers of the relevant posts. An empirical evaluation of a post collection crawled from a web forum containing racially driven discussions and a tweet stream discussing the ISIS extremist group show that our proposed method for relevant post identification is significantly better than the state of the art and using a network flow graph for user identification leads to very accurate user identification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    vaderSentiment is also the tool employed by [18] to identify extremist users.

References

  1. Stanford corenlp sentiment analyzer. http://stanfordnlp.github.io/CoreNLP/sentiment.html

  2. Stromfront. https://www.stormfront.org/forum/

  3. Vader sentiment analysis. https://github.com/cjhutto/vaderSentiment

  4. Abbasi, A., Chen, H.: Applying authorship analysis to extremist-group web forum messages. IEEE Intell. Syst. 20(5), 67–75 (2005)

    Article  Google Scholar 

  5. Agarwal, S., Sureka, A.: Applying social media intelligence for predicting and identifying on-line radicalization and civil unrest oriented threats. CoRR, abs/1511.06858 (2015)

    Google Scholar 

  6. Berger, J., Morgan, J.: The ISIS Twitter census: defining and describing the population of ISIS supporters on Twitter. Brookings Proj. US Relat. Islamic World 3(20) (2015)

    Google Scholar 

  7. Berger, J., Strathearn, B.: Who matters online: measuring influence, evaluating content and countering violent extremism in online social networks (2013)

    Google Scholar 

  8. Bouchard, M., Joffres, K., Frank, R.: Preliminary analytical considerations in designing a terrorism and extremism online network extractor. In: Mago, V.K., Dabbaghian, V. (eds.) Computational Models of Complex Systems. ISRL, vol. 53, pp. 171–184. Springer, Cham (2014). doi:10.1007/978-3-319-01285-8_11

    Chapter  Google Scholar 

  9. Buntain, C., Golbeck, J., Liu, B., LaFree, G.: Evaluating public response to the Boston Marathon bombing and other acts of terrorism through Twitter. In: ICWSM, pp. 555–558 (2016)

    Google Scholar 

  10. Burnap, P., Williams, M.L., Sloan, L., et al.: Tweeting the terror: modelling the social media reaction to the woolwich terrorist attack. Soc. Netw. Anal. Mining 4(1), 1–14 (2014)

    Google Scholar 

  11. Chakrabarti, S.: Dynamic personalized pagerank in entity-relation graphs. In: WWW, pp. 571–580. ACM (2007)

    Google Scholar 

  12. Chatfield, A.T., Reddick, C.G., Brajawidagda, U.: Tweeting propaganda, radicalization and recruitment: Islamic state supporters multi-sided Twitter networks. In: dg.o, pp. 239–249. ACM (2015)

    Google Scholar 

  13. Manning, C., Raghavan, P., Schtze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  14. Dahlin, J., Johansson, F., Kaati, L., Martenson, C., Svenson, P.: Combining entity matching techniques for detecting extremist behavior on discussion boards. In: ASONAM, pp. 850–857. IEEE (2012)

    Google Scholar 

  15. Hale, W.C.: Extremism on the world wide web: a research review. Crim. Justice Stud. 25(4), 343–356 (2012)

    Google Scholar 

  16. Mei, J., Frank, R.: Sentiment crawling: extremist content collection through a sentiment analysis guided web-crawler. In: ASONAM. ACM (2015)

    Google Scholar 

  17. Rowe, M., Saif, H.: Mining pro-isis radicalisation signals from social media users. In: ICWSM, pp. 329–338 (2016)

    Google Scholar 

  18. Scrivens, R., Davies, G., Frank, R., Mei, J.: Sentiment-based identification of radical authors. In: ICDMW, pp. 979–986. IEEE (2015)

    Google Scholar 

  19. Wei, Y., Singh, L., Martin, S.: Identification of extremism on Twitter. In: Social Network Analysis Surveillance Technologies (SNAT) at ASONAM (2016)

    Google Scholar 

  20. Zhou, Y., Reid, E., Qin, J., Chen, H., Lai, G.: Us domestic extremist groups on the web: link and content analysis. IEEE Intell. Syst. 20(5), 44–51 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

We thank subject matter experts for labeling data and their general subject matter expertise provided throughout the process. This work was supported in part by the National Science Foundation (NSF) Grant SMA-1338507 and the Georgetown University Mass Data Institute (MDI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wei, Y., Singh, L. (2017). Using Network Flows to Identify Users Sharing Extremist Content on Social Media. In: Kim, J., Shim, K., Cao, L., Lee, JG., Lin, X., Moon, YS. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2017. Lecture Notes in Computer Science(), vol 10234. Springer, Cham. https://doi.org/10.1007/978-3-319-57454-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57454-7_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57453-0

  • Online ISBN: 978-3-319-57454-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics