Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Topic Modeling over Short Texts by Incorporating Word Embeddings

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10235))

Included in the following conference series:

Abstract

Inferring topics from the overwhelming amount of short texts becomes a critical but challenging task for many content analysis tasks. Existing methods such as probabilistic latent semantic analysis (PLSA) and latent Dirichlet allocation (LDA) cannot solve this problem very well since only very limited word co-occurrence information is available in short texts. This paper studies how to incorporate the external word correlation knowledge into short texts to improve the coherence of topic modeling. Based on recent results in word embeddings that learn semantically representations for words from a large corpus, we introduce a novel method, Embedding-based Topic Model (ETM), to learn latent topics from short texts. ETM not only solves the problem of very limited word co-occurrence information by aggregating short texts into long pseudo-texts, but also utilizes a Markov Random Field regularized model that gives correlated words a better chance to be put into the same topic. The experiments on real-world datasets validate the effectiveness of our model comparing with the state-of-the-art models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://news.google.com.

References

  1. Aggarwal, C.C., Zhai, C.: A survey of text clustering algorithms. In: Mining Text Data, pp. 77–128 (2012)

    Google Scholar 

  2. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. JMLR 3, 993–1022 (2003)

    MATH  Google Scholar 

  3. Chang, J., Gerrish, S., Wang, C., Boyd-Graber, J.L., Blei, D.M.: Reading tea leaves: how humans interpret topic models. In: NIPS, pp. 288–296 (2009)

    Google Scholar 

  4. Cheng, X., Yan, X., Lan, Y., Guo, J.: BTM: topic modeling over short texts. TKDE 26(12), 2928–2941 (2014)

    Google Scholar 

  5. Griffiths, T., Steyvers, M.: Finding scientific topics. Proc. Nat. Acad. Sci. 101, 5228–5235 (2004)

    Article  Google Scholar 

  6. Hofmann, T.: Probabilistic latent semantic indexing. In: SIGIR, pp. 50–57 (1999)

    Google Scholar 

  7. Kusner, M.J., Sun, Y., Kolkin, N.I., Weinberger, K.Q.: From word embeddings to document distances. In: ICML, pp. 957–966 (2015)

    Google Scholar 

  8. Mehrotra, R., Sanner, S., Buntine, W., Xie, L.: Improving LDA topic models for microblogs via tweet pooling and automatic labeling. In: SIGIR, pp. 889–892 (2013)

    Google Scholar 

  9. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: NIPS, pp. 3111–3119 (2013)

    Google Scholar 

  10. Newman, D., Bonilla, E.V., Buntine, W.: Improving topic coherence with regularized topic models. In: NIPS, pp. 496–504 (2011)

    Google Scholar 

  11. Newman, D., Lau, J.H., Grieser, K., Baldwin, T.: Automatic evaluation of topic coherence. In: NAACL, pp. 100–108 (2010)

    Google Scholar 

  12. Nigam, K., McCallum, A.K., Thrun, S., Mitchell, T.: Text classification from labeled and unlabeled documents using EM. Mach. Learn. 39(2–3), 103–134 (2000)

    Article  MATH  Google Scholar 

  13. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word representation. In: EMNLP, pp. 1532–1543 (2014)

    Google Scholar 

  14. Qiang, J., Chen, P., Ding, W., Wang, T., Fei, X., Wu, X.: Topic discovery from heterogeneous texts. In: ICTAI (2016)

    Google Scholar 

  15. Quan, X., Kit, C., Ge, Y., Pan, S.J.: Short and sparse text topic modeling via self-aggregation. In: ICAI, pp. 2270–2276 (2015)

    Google Scholar 

  16. Wang, X., Wang, Y., Zuo, W., Cai, G.: Exploring social context for topic identification in short and noisy texts. In: AAAI (2015)

    Google Scholar 

  17. Weng, J., Lim, E.-P., Jiang, J., He, Q.: Twitterrank: finding topic-sensitive influential twitterers. In: WSDM, pp. 261–270 (2010)

    Google Scholar 

  18. Xie, P., Yang, D., Xing, E.P.: Incorporating word correlation knowledge into topic modeling. In: NACACL (2015)

    Google Scholar 

  19. Yan, X., Guo, J., Lan, Y., Xu, J., Cheng, X.: A probabilistic model for bursty topic discovery in microblogs. In: AAAI, pp. 353–359 (2015)

    Google Scholar 

  20. Yin, J., Wang, J.: A dirichlet multinomial mixture model-based approach for short text clustering. In: SIGKDD, pp. 233–242 (2014)

    Google Scholar 

  21. Zhao, W.X., Jiang, J., Weng, J., He, J., Lim, E.-P., Yan, H., Li, X.: Comparing Twitter and traditional media using topic models. In: Clough, P., Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.) ECIR 2011. LNCS, vol. 6611, pp. 338–349. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20161-5_34

    Chapter  Google Scholar 

Download references

Acknowledgement

This research is partially supported by the National Key Research and Development Program of China (2016YFB1000900), and the National Natural Science Foundation of China (No. 61503116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jipeng Qiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Qiang, J., Chen, P., Wang, T., Wu, X. (2017). Topic Modeling over Short Texts by Incorporating Word Embeddings. In: Kim, J., Shim, K., Cao, L., Lee, JG., Lin, X., Moon, YS. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2017. Lecture Notes in Computer Science(), vol 10235. Springer, Cham. https://doi.org/10.1007/978-3-319-57529-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57529-2_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57528-5

  • Online ISBN: 978-3-319-57529-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics