Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Minimising Entropy Changes in Dynamic Network Evolution

  • Conference paper
  • First Online:
Graph-Based Representations in Pattern Recognition (GbRPR 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10310))

Abstract

The modelling of time-varying network evolution is critical to understanding the function of complex systems. The key to such models is a variational principle. In this paper we explore how to use the Euler-Lagrange equation to investigate the variation of entropy in time evolving networks. We commence from recent work where the von Neumman entropy can be approximated using simple degree statistics, and show that the changes in entropy in a network between different time epochs are determined by correlations in the changes in degree statistics of nodes connected by edges. Our variational principle is that the evolution of the structure of the network minimises the change in entropy with time. Using the Euler-Lagrange equation we develop a dynamic model for the evolution of node degrees. We apply our model to a time sequence of networks representing the evolution of stock prices on the New York Stock Exchange (NYSE). Our model allows us to understand periods of stability and instability in stock prices, and to predict how the degree distribution evolves with time. We show that the framework presented here provides allows accurate simulation of the time variation of degree statistics, and also captures the topological variations that take place when the structure of a network changes violently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Wolstenholme, R.J., Walden, A.T.: An efficient approach to graphical modeling of time series. IEEE Trans. Sig. Process. 63, 3266–3276 (2015). ISSN: 1053–587X

    Article  MathSciNet  MATH  Google Scholar 

  2. Ye, C., Torsello, A., Wilson, R.C.: Hancock, ER 2015, Thermodynamics of time evolving networks. In: Liu, C.-L., Luo, B., Kropatsch, W.G., Cheng, J. (eds.) Graph-Based Representations in Pattern Recognition: 10th IAPR-TC-15 International Workshop, GbRPR 2015, Beijing, China, 13–15 May 2015

    Google Scholar 

  3. Ernesto, E., Naomichi, H.: Communicability in complex networks. Phys. Rev. E 77, 036111 (2008)

    Article  MathSciNet  Google Scholar 

  4. Bai, L., Hancock, E.: Depth-based complexity traces of graphs. Pattern Recogn. 47, 1172–1186 (2014)

    Article  MATH  Google Scholar 

  5. Han, L., Wilson, R.C., Hancock, E.R.: Generative graph prototypes from information theory. IEEE Trans. Pattern Anal. Mach. Intell. 37(10), 2013–2027 (2015)

    Article  Google Scholar 

  6. Lucas, L., Bartolo, L., Fernando, B., Jordi, L., Juan, C.N., Author, A.: From time series to complex networks: the visibility graph. Proc. Natl. Acad. Sci. 105(13), 4972–4975 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Andreas, L., Simonetto, A., Leus, G.: Distributed autoregressive moving average graph filters. IEEE Sig. Process. Lett. 22(11), 1931–1935 (2015)

    Article  Google Scholar 

  8. Bai, L., Hancock, E.R., Han, L., Ren, P.: Graph clustering using graph entropy complexity traces. In: 21st International Conference on Pattern Recognition (ICPR) 2012, Tsukuba, Japan, 11–15 November 2012

    Google Scholar 

  9. Ye, C., Wilson, R.C., Hancock, E.R.: Correlation network evolution using mean reversion autoregression. In: Robles-Kelly, A., Loog, M., Biggio, B., Escolano, F., Wilson, R. (eds.) S+SSPR 2016. LNCS, vol. 10029, pp. 163–173. Springer, Cham (2016). doi:10.1007/978-3-319-49055-7_15

    Chapter  Google Scholar 

  10. Silva, F.N., Comin, C.H., Peron, T.K.D., Rodrigues, F.A., Ye, C., Wilson, R.C., Hancock, E., Costa, L.F.: Modular Dynamics of Financial Market Networks, pp. 1–13 (2015)

    Google Scholar 

  11. Barabsi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wang, J., Wilson, R., Hancock, E.R.: Network entropy analysis using the Maxwell-Boltzmann partition function. In: The 23rd International Conference on Pattern Recognition (ICPR), pp. 1–6 (2016)

    Google Scholar 

  13. Han, L., Escolano, F., Hancock, E.R., Wilson, R.C.: Graph characterizations from von Neumann entropy. Pattern Recogn. Lett. 33, 1958–1967 (2012)

    Article  Google Scholar 

  14. Passerini, F., Severini, S.: The von Neumann entropy of networks. Int. J. Agent Technol. Syst. 1(4), 58–67 (2008)

    Article  Google Scholar 

  15. Yahoo! Finance. http://finance.yahoo.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjia Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wang, J., Wilson, R.C., Hancock, E.R. (2017). Minimising Entropy Changes in Dynamic Network Evolution. In: Foggia, P., Liu, CL., Vento, M. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2017. Lecture Notes in Computer Science(), vol 10310. Springer, Cham. https://doi.org/10.1007/978-3-319-58961-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58961-9_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58960-2

  • Online ISBN: 978-3-319-58961-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics