Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Adaptive Feature Selection Based on the Most Informative Graph-Based Features

  • Conference paper
  • First Online:
Graph-Based Representations in Pattern Recognition (GbRPR 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10310))

Abstract

In this paper, we propose a novel method to adaptively select the most informative and least redundant feature subset, which has strong discriminating power with respect to the target label. Unlike most traditional methods using vectorial features, our proposed approach is based on graph-based features and thus incorporates the relationships between feature samples into the feature selection process. To efficiently encapsulate the main characteristics of the graph-based features, we probe each graph structure using the steady state random walk and compute a probability distribution of the walk visiting the vertices. Furthermore, we propose a new information theoretic criterion to measure the joint relevance of different pairwise feature combinations with respect to the target feature, through the Jensen-Shannon divergence measure between the probability distributions from the random walk on different graphs. By solving a quadratic programming problem, we use the new measure to automatically locate the subset of the most informative features, that have both low redundancy and strong discriminating power. Unlike most existing state-of-the-art feature selection methods, the proposed information theoretic feature selection method can accommodate both continuous and discrete target features. Experiments on the problem of P2P lending platforms in China demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    See the website http://www.wdzj.com/ for more details.

References

  1. Bai, L., Escolano, F., Hancock, E.R.: Depth-based hypergraph complexity traces from directed line graphs. Pattern Recogn. 54, 229–240 (2016)

    Article  MATH  Google Scholar 

  2. Bai, L., Hancock, E.R.: Fast depth-based subgraph Kernels for unattributed graphs. Pattern Recogn. 50, 233–245 (2016)

    Article  MATH  Google Scholar 

  3. Bai, L., Rossi, L., Bunke, H., Hancock, E.R.: Attributed graph Kernels using the Jensen-Tsallis q-differences. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014. LNCS, vol. 8724, pp. 99–114. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44848-9_7

    Chapter  Google Scholar 

  4. Bai, L., Rossi, L., Cui, L., Zhang, Z., Ren, P., Bai, X., Hancock, E.R.: Quantum Kernels for unattributed graphs using discrete-time quantum walks. Pattern Recogn. Lett. 87, 96–103 (2017)

    Article  Google Scholar 

  5. Bai, L., Rossi, L., Torsello, A., Hancock, E.R.: A quantum Jensen-Shannon graph Kernel for unattributed graphs. Pattern Recogn. 48(2), 344–355 (2015)

    Article  MATH  Google Scholar 

  6. Bai, L., Rossi, L., Zhang, Z., Hancock, E.R.: An aligned subtree Kernel for weighted graphs. In: Proceedings of ICML, pp. 30–39 (2015)

    Google Scholar 

  7. Bai, L., Zhang, Z., Wang, C., Bai, X., Hancock, E.R.: A graph Kernel based on the Jensen-Shannon representation alignment. In: Proceedings of IJCAI, pp. 3322–3328 (2015)

    Google Scholar 

  8. Battiti, R.: Using mutual information for selecting features in supervised neural net learning. IEEE Trans. Neural Netw. 5(4), 537–550 (1994)

    Article  Google Scholar 

  9. Bonev, B., Escolano, F., Cazorla, M.: Feature selection, mutual information, and the classification of high-dimensional patterns. Pattern Anal. Appl. 11(3–4), 309–319 (2008)

    Article  Google Scholar 

  10. Brown, G.: A new perspective for information theoretic feature selection. In: Proceedings of AISTATS, pp. 49–56 (2009)

    Google Scholar 

  11. Cui, L., Bai, L., Wang, Y., Bai, X., Zhang, Z., Hancock, E.R.: P2P lending analysis using the most relevant graph-based features. In: Robles-Kelly, A., Loog, M., Biggio, B., Escolano, F., Wilson, R. (eds.) S+SSPR 2016. LNCS, vol. 10029, pp. 3–14. Springer, Cham (2016). doi:10.1007/978-3-319-49055-7_1

    Chapter  Google Scholar 

  12. Han, J., Sun, Z., Hao, H.: Selecting feature subset with sparsity and low redundancy for unsupervised learning. Knowl.-Based Syst. 86, 210–223 (2015)

    Article  Google Scholar 

  13. He, X., Cai, D., Niyogi, P., Laplacian score for feature selection. In: Proceedings of NIPS, pp. 507–514 (2005)

    Google Scholar 

  14. Kwak, N., Choi, C.-H.: Input feature selection by mutual information based on Parzen window. IEEE Trans. Pattern Anal. Mach. Intell. 24(12), 1667–1671 (2002)

    Article  Google Scholar 

  15. Liu, S., Liu, H., Latecki, L.J., Yan, S., Xu, C., Lu, H.: Size adaptive selection of most informative features. In: Proceedings of AAAI (2011)

    Google Scholar 

  16. Malekipirbazari, M., Aksakalli, V.: Risk assessment in social lending via random forests. Expert Syst. Appl. 42(10), 4621–4631 (2015)

    Article  Google Scholar 

  17. Pavan, M., Pelillo, M.: Dominant sets and pairwise clustering. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 167–172 (2007)

    Article  Google Scholar 

  18. Peng, H., Long, F., Ding, C.H.Q.: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005)

    Article  Google Scholar 

  19. Pohjalainen, J., Räsänen, O., Kadioglu, S.: Feature selection methods and their combinations in high-dimensional classification of speaker likability, intelligibility and personality traits. Comput. Speech Lang. 29(1), 145–171 (2015)

    Article  Google Scholar 

  20. Yang, H., Moody, J.: Feature selection based on joint mutual information. In: Proceedings of AIDA, pp. 22–25 (1999)

    Google Scholar 

  21. Zhang, Z., Hancock, E.R.: Hypergraph based information-theoretic feature selection. Pattern Recogn. Lett. 33(15), 1991–1999 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant no. 61602535 and 61503422), the Open Projects Program of National Laboratory of Pattern Recognition, the Young Scholar Development Fund of Central University of Finance and Economics (No. QJJ1540), and the program for innovation research in Central University of Finance and Economics.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lu Bai or Luca Rossi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Cui, L., Jiao, Y., Bai, L., Rossi, L., Hancock, E.R. (2017). Adaptive Feature Selection Based on the Most Informative Graph-Based Features. In: Foggia, P., Liu, CL., Vento, M. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2017. Lecture Notes in Computer Science(), vol 10310. Springer, Cham. https://doi.org/10.1007/978-3-319-58961-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58961-9_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58960-2

  • Online ISBN: 978-3-319-58961-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics