Abstract
In this paper, we propose a novel nested alignment graph kernel drawing on depth-based complexity traces and the dynamic time warping framework. Specifically, for a pair of graphs, we commence by computing the depth-based complexity traces rooted at the centroid vertices. The resulting kernel for the graphs is defined by measuring the global alignment kernel, which is developed through the dynamic time warping framework, between the complexity traces. We show that the proposed kernel simultaneously considers the local and global graph characteristics in terms of the complexity traces, but also provides richer statistic measures by incorporating the whole spectrum of alignment costs between these traces. Our experiments demonstrate the effectiveness and efficiency of the proposed kernel.
Similar content being viewed by others
References
Alvarez, M.A., Qi, X., Yan, C.: A shortest-path graph kernel for estimating gene product semantic similarity. J. Biomed. Semant. 2, 3 (2011)
Bach, F.R.: Graph kernels between point clouds. In: Proceedings of ICML, pp. 25–32 (2008)
Bai, L., Escolano, F., Hancock, E.R.: Depth-based hypergraph complexity traces from directed line graphs. Pattern Recogn. 54, 229–240 (2016)
Bai, L., Hancock, E.R.: Graph kernels from the jensen-shannon divergence. J. Math. Imaging Vis. 47(1–2), 60–69 (2013)
Bai, L., Hancock, E.R.: Depth-based complexity traces of graphs. Pattern Recogn. 47(3), 1172–1186 (2014)
Bai, L., Hancock, E.R.: Fast depth-based subgraph kernels for unattributed graphs. Pattern Recogn. 50, 233–245 (2016)
Bai, L., Ren, P., Hancock, E.R.: A hypergraph kernel from isomorphism tests. In: Proceddings of ICPR, pp. 3880–3885 (2014)
Bai, L., Rossi, L., Cui, L., Zhang, Z., Ren, P., Bai, X., Hancock, E.R.: Quantum kernels for unattributed graphs using discrete-time quantum walks. Pattern Recogn. Lett. 87, 96–103 (2017)
Bai, L., Rossi, L., Torsello, A., Hancock, E.R.: A quantum jensen-shannon graph kernel for unattributed graphs. Pattern Recogn. 48(2), 344–355 (2015)
Bai, L., Rossi, L., Zhang, Z., Hancock, E.R.: An aligned subtree kernel for weighted graphs. In: Proceedings of ICML, pp. 30–39 (2015)
Bai, L., Zhang, Z., Wang, C., Bai, X., Hancock, E.R.: A graph kernel based on the Jensen-Shannon representation alignment. In: Proceedings of IJCAI, pp. 3322–3328 (2015)
Chang, C.C., Lin, C.J.: Libsvm: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 27 (2011)
Conte, D., Ramel, J., Sidere, N., Luqman, M.M., Gaüzère, B., Gibert, J., Brun, L., Vento, M.: A comparison of explicit and implicit graph embedding methods for pattern recognition. In: Proceedings of GbRPR, pp. 81–90 (2013)
Costa, F., De Grave, K.: Fast neighborhood subgraph pairwise distance kernel. In: Proceedings ICML, pp. 255–262 (2010)
Cuturi, M.: Fast global alignment kernels. In: Proceedings of ICML, pp. 929–936 (2011)
Cuturi, M., Vert, J., Birkenes, Ø., Matsui, T.: A kernel for time series based on global alignments. In: Proceedings of ICASSP, pp. 413–416 (2007)
Haasdonk, B., Bahlmann, C.: Learning with distance substitution kernels. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 220–227. Springer, Heidelberg (2004). doi:10.1007/978-3-540-28649-3_27
Harchaoui, Z., Bach, F.: Image classification with segmentation graph kernels. In: Proceedings of CVPR, pp. 1–8 (2007)
Johansson, F.D., Jethava, V., Dubhashi, D.P., Bhattacharyya, C.: Global graph kernels using geometric embeddings. In: Proceedings of ICML, pp. 694–702 (2014)
Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled graphs. In: Proceedings of ICML, pp. 321–328 (2003)
Kriege, N., Mutzel, P.: Subgraph matching kernels for attributed graphs. In: Proceedings of ICML (2012)
Kriege, N.M., Giscard, P., Wilson, R.C.: On valid optimal assignment kernels and applications to graph classification. In: Proceedings of NIPS, pp. 1615–1623 (2016)
Ren, P., Aleksić, T., Wilson, R.C., Hancock, E.R.: A polynomial characterization of hypergraphs using the Ihara zeta function. Pattern Recogn. 44(9), 1941–1957 (2011)
Riesen, K., Bunke, H.: Graph classification and clustering based on vector space embedding. World Scientific Publishing Co., Inc., River Edge (2010)
Rossi, L., Torsello, A., Hancock, E.R.: Measuring graph similarity through continuous-time quantum walks and the quantum jensen-shannon divergence. Phys. Rev. E 91(2), 022815 (2015)
Rossi, L., Torsello, A., Hancock, E.R., Wilson, R.C.: Characterizing graph symmetries through quantum jensen-shannon divergence. Phys. Rev. E 88(3), 032806 (2013)
Urry, M., Sollich, P.: Random walk kernels and learning curves for gaussian process regression on random graphs. J. Mach. Learn. Res. 14(1), 1801–1835 (2013)
Wang, L., Sahbi, H.: Directed acyclic graph kernels for action recognition. In: Proceedings of ICCV, pp. 3168–3175 (2013)
Ye, C., Comin, C.H., Peron, T.K.D., Silva, F.N., Rodrigues, F.A., da Costa, F., Tosello, A., Hancock, E.R.: Thermodynamic characterization of networks using graph polynomials. Phys. Rev. E 92(3), 032810 (2015)
Acknowledgments
This work is supported by the National Natural Science Foundation of China (Grant no. 61503422 and 61602535), the Open Projects Program of National Laboratory of Pattern Recognition, the Young Scholar Development Fund of Central University of Finance and Economics (No. QJJ1540), and the program for innovation research in Central University of Finance and Economics.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Bai, L., Rossi, L., Cui, L., Hancock, E.R. (2017). A Nested Alignment Graph Kernel Through the Dynamic Time Warping Framework. In: Foggia, P., Liu, CL., Vento, M. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2017. Lecture Notes in Computer Science(), vol 10310. Springer, Cham. https://doi.org/10.1007/978-3-319-58961-9_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-58961-9_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-58960-2
Online ISBN: 978-3-319-58961-9
eBook Packages: Computer ScienceComputer Science (R0)