Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Convolutional Neural Networks for Thai Poem Classification

  • Conference paper
  • First Online:
Advances in Neural Networks - ISNN 2017 (ISNN 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10261))

Included in the following conference series:

Abstract

In this work, we propose a Convolutional Neural Networks (CNNs) that able to be unsupervised feature learning to classify Thai poem (Klon-8) categories and Thai poem sentiment analysis. Thai poem has prosody, syllable rhyme and rhythm, there are challenges and different from prose text classification. The input of model representation by the vector (word2vec) generated from Thai-Text corpus 5.9 Million words. We perform the experiments by comparing with Support Vector Machine (SVM) and Naïve Bayes. CNNs showed the performance of poem categories 83% and performance of sentiment analysis 61%. CNNs showed a good performance, although unused knowledge about the composition of the poem for feature extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Thailand’s Shakespeare? Sunthorn Phu | ThingsAsian. http://thingsasian.com/story/thailands-shakespeare-sunthorn-phu

  2. Kumar, V., Minz, S.: Poem classification using machine learning approach. In: Babu, B.V., Nagar, A., Deep, K., Pant, M., Bansal, J.C., Ray, K., Gupta, U. (eds.) Proceedings of the Second International Conference on Soft Computing for Problem Solving (SocProS 2012), December 28-30, 2012. AISC, vol. 236, pp. 675–682. Springer, New Delhi (2014). doi:10.1007/978-81-322-1602-5_72

    Chapter  Google Scholar 

  3. Jamal, N., Mohd, M., Noah, S.A.: Poetry classification using support vector machines. J. Comput. Sci. 8, 1441–1446 (2012)

    Article  Google Scholar 

  4. Multilabel Subject-Based Classification of Poetry - Research Publication, http://researchr.org/publication/LouIT15

  5. Vanzo, A., Croce, D., Basili, R.: A context-based model for Sentiment Analysis in Twitter. In: COLING (2014)

    Google Scholar 

  6. Yessenov, K., Misailovic, S.: Sentiment analysis of movie review comments. Methodology, 1–17 (2009)

    Google Scholar 

  7. Liparas, D., HaCohen-Kerner, Y., Moumtzidou, A., Vrochidis, S., Kompatsiaris, I.: News articles classification using random forests and weighted multimodal features. In: Lamas, D., Buitelaar, P. (eds.) IRFC 2014. LNCS, vol. 8849, pp. 63–75. Springer, Cham (2014). doi:10.1007/978-3-319-12979-2_6

    Google Scholar 

  8. Hou, Y., Frank, A.: Analyzing sentiment in classical Chinese poetry. In: LaTeCH 2015, p. 15 (2015)

    Google Scholar 

  9. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient Estimation of Word Representations in Vector Space. arXiv:13013781 Cs (2013)

  10. Le, Q.V., Brain, G., Inc, G.: A Tutorial on Deep Learning Part 1: Nonlinear Classifiers and the Backpropagation Algorithm (2015)

    Google Scholar 

  11. Le, Q.V., Brain, G., Inc, G.: A Tutorial on Deep Learning Part 2: Autoencoders, Convolutional Neural Networks and Recurrent Neural Networks (2015)

    Google Scholar 

  12. Rios, A., Kavuluru, R.: Convolutional neural networks for biomedical text classification: application in indexing biomedical articles. In: Proceedings of the 6th ACM Conference on Bioinformatics, Computational Biology and Health Informatics, pp. 258–267. ACM, New York (2015)

    Google Scholar 

  13. Zhang, Y., Wallace, B.: A Sensitivity Analysis of (and Practitioners’ Guide to) Convolutional Neural Networks for Sentence Classification. arXiv:151003820 Cs (2015)

  14. Weston, J., Chopra, S., Adams, K.: #TAGSPACE: semantic embeddings from hashtags. Presented at the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar (2014)

    Google Scholar 

  15. Veer Sattayamas: GitHub - veer66/PhlongTaIam: PHP Thai word breaker (2014)

    Google Scholar 

  16. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nuttachot Promrit or Sajjaporn Waijanya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Promrit, N., Waijanya, S. (2017). Convolutional Neural Networks for Thai Poem Classification. In: Cong, F., Leung, A., Wei, Q. (eds) Advances in Neural Networks - ISNN 2017. ISNN 2017. Lecture Notes in Computer Science(), vol 10261. Springer, Cham. https://doi.org/10.1007/978-3-319-59072-1_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59072-1_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59071-4

  • Online ISBN: 978-3-319-59072-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics