Abstract
In this work, we propose a Convolutional Neural Networks (CNNs) that able to be unsupervised feature learning to classify Thai poem (Klon-8) categories and Thai poem sentiment analysis. Thai poem has prosody, syllable rhyme and rhythm, there are challenges and different from prose text classification. The input of model representation by the vector (word2vec) generated from Thai-Text corpus 5.9 Million words. We perform the experiments by comparing with Support Vector Machine (SVM) and Naïve Bayes. CNNs showed the performance of poem categories 83% and performance of sentiment analysis 61%. CNNs showed a good performance, although unused knowledge about the composition of the poem for feature extraction.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Thailand’s Shakespeare? Sunthorn Phu | ThingsAsian. http://thingsasian.com/story/thailands-shakespeare-sunthorn-phu
Kumar, V., Minz, S.: Poem classification using machine learning approach. In: Babu, B.V., Nagar, A., Deep, K., Pant, M., Bansal, J.C., Ray, K., Gupta, U. (eds.) Proceedings of the Second International Conference on Soft Computing for Problem Solving (SocProS 2012), December 28-30, 2012. AISC, vol. 236, pp. 675–682. Springer, New Delhi (2014). doi:10.1007/978-81-322-1602-5_72
Jamal, N., Mohd, M., Noah, S.A.: Poetry classification using support vector machines. J. Comput. Sci. 8, 1441–1446 (2012)
Multilabel Subject-Based Classification of Poetry - Research Publication, http://researchr.org/publication/LouIT15
Vanzo, A., Croce, D., Basili, R.: A context-based model for Sentiment Analysis in Twitter. In: COLING (2014)
Yessenov, K., Misailovic, S.: Sentiment analysis of movie review comments. Methodology, 1–17 (2009)
Liparas, D., HaCohen-Kerner, Y., Moumtzidou, A., Vrochidis, S., Kompatsiaris, I.: News articles classification using random forests and weighted multimodal features. In: Lamas, D., Buitelaar, P. (eds.) IRFC 2014. LNCS, vol. 8849, pp. 63–75. Springer, Cham (2014). doi:10.1007/978-3-319-12979-2_6
Hou, Y., Frank, A.: Analyzing sentiment in classical Chinese poetry. In: LaTeCH 2015, p. 15 (2015)
Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient Estimation of Word Representations in Vector Space. arXiv:13013781 Cs (2013)
Le, Q.V., Brain, G., Inc, G.: A Tutorial on Deep Learning Part 1: Nonlinear Classifiers and the Backpropagation Algorithm (2015)
Le, Q.V., Brain, G., Inc, G.: A Tutorial on Deep Learning Part 2: Autoencoders, Convolutional Neural Networks and Recurrent Neural Networks (2015)
Rios, A., Kavuluru, R.: Convolutional neural networks for biomedical text classification: application in indexing biomedical articles. In: Proceedings of the 6th ACM Conference on Bioinformatics, Computational Biology and Health Informatics, pp. 258–267. ACM, New York (2015)
Zhang, Y., Wallace, B.: A Sensitivity Analysis of (and Practitioners’ Guide to) Convolutional Neural Networks for Sentence Classification. arXiv:151003820 Cs (2015)
Weston, J., Chopra, S., Adams, K.: #TAGSPACE: semantic embeddings from hashtags. Presented at the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar (2014)
Veer Sattayamas: GitHub - veer66/PhlongTaIam: PHP Thai word breaker (2014)
van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Promrit, N., Waijanya, S. (2017). Convolutional Neural Networks for Thai Poem Classification. In: Cong, F., Leung, A., Wei, Q. (eds) Advances in Neural Networks - ISNN 2017. ISNN 2017. Lecture Notes in Computer Science(), vol 10261. Springer, Cham. https://doi.org/10.1007/978-3-319-59072-1_53
Download citation
DOI: https://doi.org/10.1007/978-3-319-59072-1_53
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59071-4
Online ISBN: 978-3-319-59072-1
eBook Packages: Computer ScienceComputer Science (R0)