Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Novel Biologically Inspired Hierarchical Model for Image Recommendation

  • Conference paper
  • First Online:
Advances in Neural Networks - ISNN 2017 (ISNN 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10262))

Included in the following conference series:

Abstract

The biologically inspired model (BIM) for invariant feature representation has attracted widespread attention recently, which approximately follows the organization of cortex visuel. BIM is a computational architecture with four layers. With the image data size increases, the four-layer framework is prone to be overfitting, which limits its application. To address this issue, motivated by biology, we propose a biologically inspired hierarchical model (BIHM) for image feature representation, which adds two more discriminative layers upon the conventional four-layer framework. In contrast to the conventional BIM that mimics the inferior temporal cortex, which corresponds to the low level feature invariance and selectivity, the proposed BIHM adds two more layers upon the conventional BIM framework to simulate inferotemporal cortex, exploring higher level feature invariance and selectivity. Furthermore, we firstly utilize the BIHM in the image recommendation. To demonstrate the effectiveness of proposed model, we use it in image recommendation task and perform experiment on CalTech5 datasets. The experiment results show that BIHM exhibits higher performance than conventional BIM and is very comparable to existing architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wu, L., Jin, R., Jain, A.K.: Tag completion for image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 35, 716–727 (2013)

    Article  Google Scholar 

  2. Kim, M., Park, S.O.: Group affinity based social trust model for an intelligent movie recommender system. Multimed. Tools Appl. 64, 505–516 (2013)

    Article  Google Scholar 

  3. Wang, J., Shim, B.: On the recovery limit of sparse signals using orthogonal matching pursuit. IEEE Trans. Signal Process. 60, 4973–4976 (2012)

    Article  MathSciNet  Google Scholar 

  4. Viana, W., Braga, R., Lemos, F.D.A., Souza, J.M.O., Carmo, R.A.F., Andrade, R.M.C., et al.: Mobile photo recommendation and logbook generation using context-tagged images. IEEE Multimed. 21, 24–34 (2014)

    Article  Google Scholar 

  5. Wan, J., Wang, D., Hoi, S.C.H., et al.: Deep learning for content-based image retrieval: a comprehensive study. In: 22nd ACM International Conference on Multimedia, pp. 157–166. ACM, Orlando (2014)

    Google Scholar 

  6. Babenko, A., Slesarev, A., Chigorin, A., Lempitsky, V.: Neural codes for image retrieval. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 584–599. Springer, Cham (2014). doi:10.1007/978-3-319-10590-1_38

    Google Scholar 

  7. Donahue, J., Anne, H.L., Guadarrama, S., Rohrbach, M., Venugopalan, S., Saenko, K., et al.: Long-term recurrent convolutional networks for visual recognition and description, pp. 2625–2634 (2015)

    Google Scholar 

  8. Habibian, A., van de Sande, K.E.A., Snoek, C.G.M.: Recommendations for video event recognition using concept vocabularies. In: 3rd ACM Conference on International Conference on Multimedia Retrieval, pp. 89–96. ACM, New York (2013)

    Google Scholar 

  9. Tam, K.P.: Concepts and measures related to connection to nature: similarities and differences. J. Environ. Psychol. 34, 64–78 (2013)

    Article  Google Scholar 

  10. Hubel, D.H., Wiesel, T.N.: Receptive fields of single neurones in the cat’s striate cortex. J. Physiol. 148, 574–591 (1959)

    Article  Google Scholar 

  11. Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160(1), 106–154 (1962)

    Article  Google Scholar 

  12. Poggio, T., Girosi, F.: Networks for approximation and learning. Proc. IEEE 78, 1481–1497 (1990)

    Article  MATH  Google Scholar 

  13. Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nat. Neurosci. 2, 1019–1025 (1999)

    Article  Google Scholar 

  14. Qiao, H., Xi, X., Li, Y., Wu, W., Li, F.: Biologically inspired visual model with preliminary cognition and active attention adjustment. IEEE Trans. Cybern. 45, 2612–2624 (2015)

    Article  Google Scholar 

  15. Qiao, H., Li, C., Yin, P., Wu, W., Liu, Z.Y.: Human-inspired motion model of upper-limb with fast response and learning ability – a promising direction for robot system and control. Assem. Autom. 36, 97–107 (2016)

    Article  Google Scholar 

  16. Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., Poggio, T.: Robust object recognition with cortex-like mechanisms. IEEE Trans. Pattern Anal. Mach. Intell. 29, 411–426 (2007)

    Article  Google Scholar 

  17. Mutch, J., Lowe, D.G.: Multiclass object recognition with sparse, localized features. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, vol. 1, pp. 11–18 (2006)

    Google Scholar 

  18. Lu, Y.F., Zhang, H.Z., Kang, T.K., Choi, I.H., Lim, M.T.: Extended biologically inspired model for object recognition based on oriented Gaussian-Hermite moment. Neurocomputing 139, 189–201 (2014)

    Article  Google Scholar 

  19. Lu, Y.F., Kang, T.K., Zhang, H.Z., Lim, M.T.: Enhanced hierarchical model of object recognition based on a novel patch selection method in salient regions. IET Comput. Vis. 9, 663–672 (2015)

    Article  Google Scholar 

  20. Lu, Y.F., Zhang, H.Z., Kang, T.K., Lim, M.T.: Dominant orientation patch matching for HMAX. Neurocomputing 193, 155–166 (2016)

    Article  Google Scholar 

  21. Zhang, H.Z., Lu, Y.F., Kang, T.K., Lim, M.T.: B-HMAX: a fast binary biologically inspired model for object recognition. Neurocomputing 218, 242–250 (2016)

    Article  Google Scholar 

  22. Serre, T., Riesenhuber, M.: Realistic modeling of simple and complex cell tuning in the HMAX model, and implications for invariant object recognition in cortex (2004)

    Google Scholar 

  23. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 1–27 (2011)

    Article  Google Scholar 

  24. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Science Foundation of China (Grant 61603389) and partially supported by National Natural Science Foundation of China (Grants 61210009, 61502494) and also by the Strategic Priority Research Program of the CAS (Grant XDB02080003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Feng Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lu, YF., Qiao, H., Li, Y., Jia, LH., Zhang, AX. (2017). A Novel Biologically Inspired Hierarchical Model for Image Recommendation. In: Cong, F., Leung, A., Wei, Q. (eds) Advances in Neural Networks - ISNN 2017. ISNN 2017. Lecture Notes in Computer Science(), vol 10262. Springer, Cham. https://doi.org/10.1007/978-3-319-59081-3_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59081-3_68

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59080-6

  • Online ISBN: 978-3-319-59081-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics