Abstract
We provide an axiomatic characterization of preorders that are defined with respect to a set of properties. Moreover, it is proven that property-based posets are in natural correspondence with topological spaces. This paper propose also a characterization and a generalization of a Sugeno-type integral in our framework.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aerts, D.: Foundations of quantum physics: a general realistic and operational approach. Int. J. Theor. Phys. 38, 289358 (1999)
Aerts, D., Colebunders, E., van der Voorde, A., van Steirteghem, B.: State property systems and closure spaces: a study of categorical equivalence. Int. J. Theor. Phys. 38, 359–385 (1999)
Aerts, D., van der Voorde, A., Deses, D.: Connectedness applied to closure spaces and state property systems. J. Electr. Eng. 52, 1821 (2001)
Cardin, M.: Benchmarking over distributive lattices. In: Carvalho, J., Lesot, M.J., Kaymak, U., Vieira, S., Bouchon-Meunier, B., Yager, R. (eds.) IPMU 2016. Communications in Computer and Information Science, pp. 117–125. Springer, Cham (2016)
Caspard, N., Leclerc, B., Monjardet, B.: Finite Ordered Sets. Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (2012)
Couceiro, M., Marichal, J.-L.: Polynomial functions over bounded distributive lattices. J. Multiple-Valued Log S 18, 247–256 (2012)
Couceiro, M., Marichal, J.L.: Characterizations of discrete Sugeno integrals as lattice polynomial functions. In: Proceedings of the 30th Linz Seminar on Fuzzy Set Theory (LINZ 2009), pp. 17–20 (2009)
Couceiro, M., Marichal, J.L.: Characterizations of discrete Sugeno integrals as polynomial functions over distributive lattices. Fuzzy Set Syst. 161, 694–707 (2010)
Chambers, C.P., Miller, A.D.: Scholarly influence. J. Econ. Theory 151(1), 571–583 (2014)
Chambers, C.P., Miller, A.D.: Benchmarking. Working Paper (2015)
Daniëls, T., Pacuit, E.: A general approach to aggregation problems. J. Logic Comput. 19(3), 517–536 (2009)
Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press, New York (2002)
Grabisch, M., Marichal, J.L., Mesiar, R., Pap, E.: Aggregation Functions. Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (2009)
Grätzer, G.: General Lattice Theory. Birkhäuser Verlag, Berlin (2003)
Leclerc, B., Monjardet, B.: Aggregation and residuation. Order 30, 261–268 (2013)
Monjardet, B.: Arrowian characterization of latticial federation consensus functions. Math. Soc. Sci. 20, 51–71 (1990)
Nehring, K., Puppe, C.: Abstract Arrowian aggregation. J. Econ. Theory 145, 467–494 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Cardin, M. (2018). Aggregation over Property-Based Preference Domains. In: Torra, V., Mesiar, R., Baets, B. (eds) Aggregation Functions in Theory and in Practice. AGOP 2017. Advances in Intelligent Systems and Computing, vol 581. Springer, Cham. https://doi.org/10.1007/978-3-319-59306-7_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-59306-7_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59305-0
Online ISBN: 978-3-319-59306-7
eBook Packages: EngineeringEngineering (R0)