Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Developing Cloud-Based Tools for Water Resources Data Analysis Using R and Shiny

  • Conference paper
  • First Online:
Advances in Internetworking, Data & Web Technologies (EIDWT 2017)

Part of the book series: Lecture Notes on Data Engineering and Communications Technologies ((LNDECT,volume 6))

  • 1497 Accesses

Abstract

Aimed at developing and utilizing the water resource appropriately, it is critical to analyze, mine and present the valuable information and knowledge. Until recently, analyzing the big data in an online environment has not been an easy task especially in the eyes of data consumers in water conservancy domain. Moreover, there is no single tool or a one-size-fits-all solution for big data processing and data visualization in a special field. This barrier is now overcome by the availability of cloud computing, R and Shiny. In this paper, we propose to develop cloud-based tools for water resource data analysis using R and Shiny. Following the whole solution, the implementation using long-term hydrological data collected from Chu River is introduced as an example. The results show that these tools are valuable and practical resource for individuals with limited web development skills and offer opportunity for more dynamic and collaborative water resource management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kudyba, S.: Big Data, Mining, and Analytics. CRC Press, Boca Raton (2014)

    Book  Google Scholar 

  2. Hey, T., Tansley, S., Tolle, K.: The Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft Research, Washington (2009)

    Google Scholar 

  3. Jiang, Y.Z., Ye, Y.T., Wang, H.: Smart basin and its prospects for application. Syst. Eng. Theor. Pract. 31(6), 1174–1181 (2011)

    Google Scholar 

  4. Wang, Z.J., Wang, G.Q., Wang, J.H.: Developing the internet of water to prompt water utilization efficiency. Water Resour. Hydropower Eng. 44(1), 1–6 (2013)

    Google Scholar 

  5. Ai, P., Yue, Z.X.: A framework for processing water resources big data and application. Appl. Mech. Mater. 519−520, 3–8 (2014)

    Google Scholar 

  6. Munzert, S., Rubba, C., Meißner, P., Nyhuis, D.: Automated Data Collection with R. Wiley, Chichester (2015)

    Google Scholar 

  7. Kabacoff, R.I.: R in Action: Data Analysis and Graphics with R. Manning, New York (2011)

    Google Scholar 

  8. Gohil, A.: R Data Visualization Cookbook. Packet Publishing, Birmingham (2015)

    Google Scholar 

  9. Beeley, C.: Web Application Development with R Using Shiny. Packet Publishing, Birmingham (2013)

    Google Scholar 

  10. Oril, A.: R for Cloud Computing: An Approach for Data Scientists. Springer, New York (2014)

    Google Scholar 

  11. Buyya, R., Broberg, J., Goscinski, A.: Cloud Computing: Principles and Paradigms. Wiley, Hoboken (2011)

    Book  Google Scholar 

  12. Wang, L., Ranjan, R., Chen, J., Benatallah, B.: Cloud Computing: Methodology, Systems and Applications. CRC Press, Boca Raton (2012)

    Google Scholar 

  13. Whateley, S., Walker, J.D., Brown, C.: A web-based screening model for climate risk to water supply systems in the northeastern united states. Environ. Model Softw. 73, 64–75 (2015)

    Article  Google Scholar 

  14. Boelaert, J., Bendhaiba, L., Olteanu, M., Vialaneix, N.V.: SOMbrero: an R package for numeric and non-numeric self-organizing maps. In: Villmann, T., Schleif, F.M., Kaden, M., Lang, M. (eds.) WSOM 2014. Advances in Intelligent Systems and Computing, vol. 295, pp. 219–228. Springer, Heidelberg (2014)

    Google Scholar 

  15. Wojciechowshi, J., Hopkins, A.M., Upton, R.N.: Interactive pharmacometric applications using R and the Shiny package. Pharmacometrics Syst. Pharmacol. 4, 2–3 (2015)

    Google Scholar 

  16. Jahanshiri, E., Shariff, A.R.M.: Developing web-based data analysis tools for precision farming using R and Shiny. In: 7th IGRSM International Remote Sensing & GIS Conference and Exhibition, pp. 1–6. IOP Publishing, Kuala Lumpur (2014)

    Google Scholar 

  17. Nisa, K.K., Andrianto, H.A., Mardhiyyah, R.: Hotspot clustering using DBSCAN algorithm and shiny web framework. In: Proceedings of 2014 International Conference on Advanced Computer Science and Information Systems, pp. 129–132. IEEE (2014)

    Google Scholar 

  18. de Souza, R.S., Ciardi, B.: AMADA—analysis of multidimensional astronomical datasets. Astron. Comput. 12, 100–108 (2015)

    Article  Google Scholar 

  19. Furht, B., Escalante, A.: Handbook of Cloud Computing. Springer, New York (2010)

    Book  MATH  Google Scholar 

  20. Apache Cloudstack. http://cloudstack.apache.org/

  21. Lin, J., Dyer, C.: Data-Intensive Text Processing with MapReduce. Morgan & Claypool Publishers, College Park (2010). 1−64

    Google Scholar 

  22. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)

    Article  Google Scholar 

  23. Nathan, P.: Enterprise Data Workflows with Cascading. O’Reilly Media, Sebastopol (2013)

    Google Scholar 

  24. Prajapati, V.: Big Data Analytics with R and Hadoop. Packt Publishing, Birmingham (2013)

    Google Scholar 

  25. Zabukovec, A., Jaklic, J.: The impact of information visualization on the quality of information in business decision-making. Int. J. Technol. Human Interact. (IJTHI) 11(2), 61–79 (2015)

    Article  Google Scholar 

  26. Zhu, Y.L., Wang, Y.M., Wan, D., et al.: Similarity mining of hydrological time series based on semantic similarity messures. J. China Hydrol. 31(1), 35–40 (2011)

    Google Scholar 

Download references

Acknowledgments

The research is supported by (1) National Natural Science Foundation of China (61300122); (2) A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions; (3) Water Science and Technology Project of Jiangsu Province (2013025); (4) Central University of basic scientific research and business fee of Hohai University (2009B21614).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Ye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Ye, F., Chen, Y., Huang, Q., Li, L. (2018). Developing Cloud-Based Tools for Water Resources Data Analysis Using R and Shiny. In: Barolli, L., Zhang, M., Wang, X. (eds) Advances in Internetworking, Data & Web Technologies. EIDWT 2017. Lecture Notes on Data Engineering and Communications Technologies, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-59463-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59463-7_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59462-0

  • Online ISBN: 978-3-319-59463-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics