Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Leveraging Distributed Representations of Elements in Triples for Predicate Linking

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10334))

Included in the following conference series:

  • 2654 Accesses

Abstract

Knowledge graphs (KGs) play a crucial role in many modern applications. Many open information extraction approaches propose the extraction of triples from natural language text in order to populate knowledge. Nonetheless, most approaches do not consider forming links between the extracted triples and the KG triples, especially for predicates. Predicate linking is used to identify the predicate in a KG that exactly corresponds to an extracted predicate; this allows the avoidance of the heterogeneous problem. Resolving the heterogeneous problem can increase searchability over KGs. Although there have been a few studies that considered linking predicates, most of them have relied on statistical knowledge patterns, which are not able to generate all possible patterns. In this paper, we introduce distributed representations of elements in triples and leverage them for computing the similarity between predicates in order to find links that would not appear in statistical patterns. In the experiment, the results show that leveraging the distributed representations of triple elements can discover links between identical predicates, which cannot be achieved by the statistical pattern approach. As a result, our approach outperformed the traditional baseline for the predicate linking task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    dbr: http://dbpedia.org/resource/.

  2. 2.

    dbo: http://dbpedia.org/ontology/.

  3. 3.

    https://www.w3.org/TR/rdf-schema/.

  4. 4.

    http://ri-www.nii.ac.jp/VSim/datasets.zip.

  5. 5.

    https://code.google.com/archive/p/word2vec/.

References

  1. Abedjan, Z., Naumann, F.: Synonym analysis for predicate expansion. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 140–154. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38288-8_10

    Chapter  Google Scholar 

  2. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). doi:10.1007/978-3-540-76298-0_52

    Chapter  Google Scholar 

  3. Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka Jr., E.R., Mitchell, T.M.: Toward an architecture for never-ending language learning. In: Proceedings of AAAI (2010)

    Google Scholar 

  4. Euzenat, J., et al.: Ontology matching, vol. 18. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  5. Exner, P., Nugues, P.: Entity extraction: from unstructured text to DBpedia RDF triples. In: The Web of Linked Entities Workshop, pp. 58–69. CEUR-WS (2012)

    Google Scholar 

  6. Fader, A., Soderland, S., Etzioni, O.: Identifying relations for open information extraction. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 1535–1545. ACL (2011)

    Google Scholar 

  7. Kríž, V., Hladká, B., Nečaský, M., Knap, T.: Data extraction using NLP techniques and its transformation to linked data. In: Gelbukh, A., Espinoza, F.C., Galicia-Haro, S.N. (eds.) MICAI 2014. LNCS, vol. 8856, pp. 113–124. Springer, Cham (2014). doi:10.1007/978-3-319-13647-9_13

    Google Scholar 

  8. Lee, H., Peirsman, Y., Chang, A., Chambers, N., Surdeanu, M., Jurafsky, D.: Stanford’s multi-pass sieve coreference resolution system at the CoNLL-2011 shared task. In: Proceedings of the 15th Conference on Computational Natural Language Learning: Shared Task, pp. 28–34. ACL (2011)

    Google Scholar 

  9. Mendes, P.N., Jakob, M., García-Silva, A., Bizer, C.: DBpedia spotlight: shedding light on the web of documents. In: Proceedings of the 7th International Conference on Semantic Systems, pp. 1–8. ACM (2011)

    Google Scholar 

  10. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Proceedings of Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  11. Schmitz, M., Bart, R., Soderland, S., Etzioni, O.: Open language learning for information extraction. In: Proceedings of the Joint Conference on EMNLP, pp. 523–534. ACL (2012)

    Google Scholar 

  12. Zhang, Z., Gentile, A.L., Blomqvist, E., Augenstein, I., Ciravegna, F.: Statistical knowledge patterns: identifying synonymous relations in large linked datasets. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 703–719. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41335-3_44

    Chapter  Google Scholar 

  13. Zhao, L., Ichise, R.: Ontology integration for linked data. J. Data Semant. 3(4), 237–254 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by NEDO (New Energy and Industrial Technology Development Organization).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natthawut Kertkeidkachorn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kertkeidkachorn, N., Ichise, R. (2017). Leveraging Distributed Representations of Elements in Triples for Predicate Linking. In: Martínez de Pisón, F., Urraca, R., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2017. Lecture Notes in Computer Science(), vol 10334. Springer, Cham. https://doi.org/10.1007/978-3-319-59650-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59650-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59649-5

  • Online ISBN: 978-3-319-59650-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics