Abstract
In this paper we propose a blind deconvolution approach for reconstruction of Adaptive Optics (AO) high-resolution retinal images. The framework employs Random Forest to learn the mapping of retinal images onto the space of blur kernels expressed in terms of Zernike coefficients. A specially designed feature extraction technique allows inference of blur kernels for retinal images of various quality, taken at different locations of the retina. This model is validated on synthetically generated images as well as real AO high-resolution retinal images. The obtained results on the synthetic data showed an average root-mean-square error of 0.0051 for the predicted blur kernels and 0.0464 for the reconstructed images, compared to the ground truth (GT). The assessment of the reconstructed AO retinal images demonstrated that the contrast, sharpness and visual quality of the images have been significantly improved.
Similar content being viewed by others
References
Rao, C., Yu, T., Hua, B.: Topics in adaptive optics. AO-based high resolution image post-processing. In: Tyson, R.K. (eds.) Topics in Adaptive Optics, pp. 69–94. InTech (2012)
Arines, J.: Partially compensated deconvolution from wavefront sensing images of the eye fundus. Opt. Commun. 284(6), 1548–1552 (2011)
Christou, J.C., Roorda, A., Williams, D.R.: Deconvolution of adaptive optics retinal images. J. Opt. Soc. Am. A. Opt. Image Sci. Vis. 21(8), 1393–1401 (2004)
Blanco, L., Mugnier, L.M.: Marginal blind deconvolution of adaptive optics retinal images. Opt. Express 19(23), 23227 (2011)
Li, H., Lu, J., Shi, G., Zhang, Y.: Real-time blind deconvolution of retinal images in adaptive optics scanning laser ophthalmoscopy. Opt. Commun. 284(13), 3258–3263 (2011)
Chenegros, G., Mugnier, L.M., Lacombe, F., Glanc, M.: 3D phase diversity: a myopic deconvolution method for short-exposure images: application to retinal imaging. J. Opt. Soc. Am. A 24(5), 1349 (2007)
Fanello, S.R., Keskin, C., Kohli, P., Izadi, S., Shotton, J., Criminisi, A., Pattacini, U., Paek T.: Filter forests for learning data-dependent convolutional kernels. In: IEEE CVPR, pp. 1709–1716 (2014)
Schuler, C.J., Burger, H.C., Harmeling, S., Scholkopf, B.: A machine learning approach for non-blind image deconvolution. In: IEEE CVPR, pp. 1067–1074 (2013)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. CVPR 1, 886–893 (2005)
Lazareva, A., Liatsis, P., Rauscher, F.G.: An automated image processing system for the detection of photoreceptor cells in adaptive optics retinal images. In: IWSSIP, pp. 196–199 (2015)
Atchison, D.A., Bradley, A., Thibos, L.N., Smith, G.: Useful variations of the Badal Optometer. Optom. Vis. Sci. 72(4), 279–284 (1995)
Noll, R.J.: Zernike polynomials and atmospheric turbulence. J. Opt. Soc. Am. 66(3), 207 (1976)
Thibos, L.N., Bradley, A., Hong, X.: A statistical model of the aberration structure of normal, well-corrected eyes. Ophthalmic Physiol. Opt. 22(5), 427–433 (2002)
Valeshabad, A.K., Wanek, J., Grant, P., Lim, J.I., Chau, F.Y., Zelkha, R., Camardo, N., Shahidi, M.: Wavefront error correction with adaptive optics in diabetic retinopathy. Optom. Vis. Sci. 91(10), 1238–1243 (2014)
Mariotti, L., Devaney, N.: Performance analysis of cone detection algorithms. J. Opt. Soc. Am. A 32(4), 497 (2015)
Lazareva, A., Liatsis, P., Rauscher, F.G.: Hessian-LoG filtering for enhancement and detection of photoreceptor cells in adaptive optics retinal images. J. Opt. Soc. Am. A 33(1), 84 (2015)
Lucy, L.B.: An iterative technique for the rectification of observed distributions. Astron. J. 79, 745 (1974)
Richardson, W.H.: Bayesian-based iterative method of image restoration. J. Opt. Soc. Am. 62(1), 55 (1972)
Sroubek, F., Milanfar, P.: Robust multichannel blind deconvolution via fast alternating minimization. IEEE Trans. Image Process. 21(4), 1687–1700 (2012)
Peli, E.: Contrast in complex images. J. Opt. Soc. Am. A 7(10), 2032 (1990)
Kanjar, D., Masilamani, V.: A new no-reference image quality measure for blurred images in spatial domain. J. Image Graph. 1(1), 39–42 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Lazareva, A., Asad, M., Slabaugh, G. (2017). Learning to Deblur Adaptive Optics Retinal Images. In: Karray, F., Campilho, A., Cheriet, F. (eds) Image Analysis and Recognition. ICIAR 2017. Lecture Notes in Computer Science(), vol 10317. Springer, Cham. https://doi.org/10.1007/978-3-319-59876-5_55
Download citation
DOI: https://doi.org/10.1007/978-3-319-59876-5_55
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59875-8
Online ISBN: 978-3-319-59876-5
eBook Packages: Computer ScienceComputer Science (R0)