Abstract
Malignant melanomas are the most deadly type of skin cancers. Early diagnosis is a key for successful treatment and survival. The paper presents the system for supporting the process of diagnosis of skin lesions in order to detect a malignant melanoma. The paper describes the development process of an intelligent system purposed for the diagnosis of malignant melanoma. Presented system can be used as a decision support system for primary care physicians and as a system capable of self-examination of the skin with usage of dermatoscope. The system utilizes computational intelligence methods for proper classification of the dermoscopic features extracted from the medical images. The paper also proposes the extension of the well know ABCD method used for malignant melanoma diagnosis. The proposed system is tested on 126 and trained on 80 skin moles and the obtained results are very promising.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
1. Greene, Mark H., et al. High risk of malignant melanoma in melanoma-prone families with dysplastic nevi. Annals of internal medicine, 1985, 102.4: 458-465.
2. Gellin GA, Kopf AW, Garfinkel L. Malignant Melanoma, A Controlled Study of Possibly Associated Factors. Arch Dermatol. 1969;99(1):43-48.
3. Stolz, W; Riemann, A; Cognetta, A.B. ABCD rule of dermatoscopy-a new practical method for early recognition of malignant-melanoma. European Journal of Dermatology, 1994, 4.7: 521-527.
4. Johr, R.H. Dermoscopy: alternative melanocytic algorithms— the ABCD rule of dermatoscopy, menzies scoring method, and 7-point checklist. Clinics in dermatology, 2002, 20.3: 240-247.
5. Scott, H.J. The CASH (color, architecture, symmetry, and homogeneity) algorithm for dermoscopy. Journal of the American Academy of Dermatology, 2007, 56.1: 45-52.
6. Luís F., Caeiro Margalho, Guerra Rosad, Automatic System for Diagnosis of Skin Lesions Based on Dermoscopic Images.
7. Zortea, Maciel; Skrøvseth, Stein Olav; Godtliebsen, Fred. Automatic learning of spatial patterns for diagnosis of skin lesions. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology. IEEE, 2010. p. 5601-5604.
8. Sheha, Mariam A.; Mabrouk, Mai S.; Sharawy, Amr. Automatic detection of melanoma skin cancer using texture analysis. International Journal of Computer Applications, 2012, 42.20: 22-26.
9. G. Di Leo, G. Fabbrocini, A. Paolillo, O. Rescigno and P. Sommella, “Towards an automatic diagnosis system for skin lesions: Estimation of blue-whitish veil and regression structures,” 2009 6th International Multi-Conference on Systems, Signals and Devices, Djerba, 2009, pp. 1-6.
10. M. Sadeghi, T. K. Lee, D. McLean, H. Lui and M. S. Atkins, “Detection and Analysis of Irregular Streaks in Dermoscopic Images of Skin Lesions,” in IEEE Transactions on Medical Imaging, vol. 32, no. 5, pp. 849-861, May 2013.
11. Mikołajczyk, A., Analiza znamion skórnych za pomocą metod przetwarzania obrazu i algorytmów inteligencji obliczeniowej, Innowacyjne rozwiązania w obszarze automatyki, robotyki i pomiarów. Konkurs Młodzi Innowacyjni, 2016, 87-104.
12. Mikołajczyk, A., Kwasigroch, A., Grochowski, M., System wspomagający diagnostykę czerniaka złośliwego przy pomocy metod przetwarzania obrazu i algorytmów inteligencji obliczeniowej. Zeszyty Naukowe Politechniki Gdańskiej nr 51, 2016, str. 119-122.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Mikołajczyk, A., Kwasigroch, A., Grochowski, M. (2017). Intelligent system supporting diagnosis of malignant melanoma. In: Mitkowski, W., Kacprzyk, J., Oprzędkiewicz, K., Skruch, P. (eds) Trends in Advanced Intelligent Control, Optimization and Automation. KKA 2017. Advances in Intelligent Systems and Computing, vol 577. Springer, Cham. https://doi.org/10.1007/978-3-319-60699-6_79
Download citation
DOI: https://doi.org/10.1007/978-3-319-60699-6_79
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-60698-9
Online ISBN: 978-3-319-60699-6
eBook Packages: EngineeringEngineering (R0)