Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Intelligent system supporting diagnosis of malignant melanoma

  • Conference paper
  • First Online:
Trends in Advanced Intelligent Control, Optimization and Automation (KKA 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 577))

Included in the following conference series:

  • 3151 Accesses

Abstract

Malignant melanomas are the most deadly type of skin cancers. Early diagnosis is a key for successful treatment and survival. The paper presents the system for supporting the process of diagnosis of skin lesions in order to detect a malignant melanoma. The paper describes the development process of an intelligent system purposed for the diagnosis of malignant melanoma. Presented system can be used as a decision support system for primary care physicians and as a system capable of self-examination of the skin with usage of dermatoscope. The system utilizes computational intelligence methods for proper classification of the dermoscopic features extracted from the medical images. The paper also proposes the extension of the well know ABCD method used for malignant melanoma diagnosis. The proposed system is tested on 126 and trained on 80 skin moles and the obtained results are very promising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • 1. Greene, Mark H., et al. High risk of malignant melanoma in melanoma-prone families with dysplastic nevi. Annals of internal medicine, 1985, 102.4: 458-465.

    Google Scholar 

  • 2. Gellin GA, Kopf AW, Garfinkel L. Malignant Melanoma, A Controlled Study of Possibly Associated Factors. Arch Dermatol. 1969;99(1):43-48.

    Google Scholar 

  • 3. Stolz, W; Riemann, A; Cognetta, A.B. ABCD rule of dermatoscopy-a new practical method for early recognition of malignant-melanoma. European Journal of Dermatology, 1994, 4.7: 521-527.

    Google Scholar 

  • 4. Johr, R.H. Dermoscopy: alternative melanocytic algorithms— the ABCD rule of dermatoscopy, menzies scoring method, and 7-point checklist. Clinics in dermatology, 2002, 20.3: 240-247.

    Google Scholar 

  • 5. Scott, H.J. The CASH (color, architecture, symmetry, and homogeneity) algorithm for dermoscopy. Journal of the American Academy of Dermatology, 2007, 56.1: 45-52.

    Google Scholar 

  • 6. Luís F., Caeiro Margalho, Guerra Rosad, Automatic System for Diagnosis of Skin Lesions Based on Dermoscopic Images.

    Google Scholar 

  • 7. Zortea, Maciel; Skrøvseth, Stein Olav; Godtliebsen, Fred. Automatic learning of spatial patterns for diagnosis of skin lesions. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology. IEEE, 2010. p. 5601-5604.

    Google Scholar 

  • 8. Sheha, Mariam A.; Mabrouk, Mai S.; Sharawy, Amr. Automatic detection of melanoma skin cancer using texture analysis. International Journal of Computer Applications, 2012, 42.20: 22-26.

    Google Scholar 

  • 9. G. Di Leo, G. Fabbrocini, A. Paolillo, O. Rescigno and P. Sommella, “Towards an automatic diagnosis system for skin lesions: Estimation of blue-whitish veil and regression structures,” 2009 6th International Multi-Conference on Systems, Signals and Devices, Djerba, 2009, pp. 1-6.

    Google Scholar 

  • 10. M. Sadeghi, T. K. Lee, D. McLean, H. Lui and M. S. Atkins, “Detection and Analysis of Irregular Streaks in Dermoscopic Images of Skin Lesions,” in IEEE Transactions on Medical Imaging, vol. 32, no. 5, pp. 849-861, May 2013.

    Google Scholar 

  • 11. Mikołajczyk, A., Analiza znamion skórnych za pomocą metod przetwarzania obrazu i algorytmów inteligencji obliczeniowej, Innowacyjne rozwiązania w obszarze automatyki, robotyki i pomiarów. Konkurs Młodzi Innowacyjni, 2016, 87-104.

    Google Scholar 

  • 12. Mikołajczyk, A., Kwasigroch, A., Grochowski, M., System wspomagający diagnostykę czerniaka złośliwego przy pomocy metod przetwarzania obrazu i algorytmów inteligencji obliczeniowej. Zeszyty Naukowe Politechniki Gdańskiej nr 51, 2016, str. 119-122.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Grochowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Mikołajczyk, A., Kwasigroch, A., Grochowski, M. (2017). Intelligent system supporting diagnosis of malignant melanoma. In: Mitkowski, W., Kacprzyk, J., Oprzędkiewicz, K., Skruch, P. (eds) Trends in Advanced Intelligent Control, Optimization and Automation. KKA 2017. Advances in Intelligent Systems and Computing, vol 577. Springer, Cham. https://doi.org/10.1007/978-3-319-60699-6_79

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60699-6_79

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60698-9

  • Online ISBN: 978-3-319-60699-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics