Abstract
Diverse constraints on image acquisition environment often limit the resolution in cross-slice direction of Magnetic Resonance (MR) image volume, which does not meet the requirement of isotropic 3D MR images in accurate medical diagnosis. This paper proposes an algorithm to restore isotropic 3D MR images from anisotropic 2D multi-slice volumes, by preserving the MR details that play significant role in medical diagnosis. The MR image details are preserved using dictionaries, which are learned using fine to coarse patch details, extracted from different scales of MR image. Learned dictionaries provide detail information for restoring MR patch details. Furthermore, a constraint is used to preserve edges within the restored MR image by minimizing an energy cost. Here, the constraint is weighted adaptively according to the dominant edge orientation of the image, to preserve the details along different orientations effectively. Experimental results demonstrate the ability of our approach to preserve MR image details.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Available at http://personales.upv.es/jmanjon/demo2.zip.
References
Van Reeth, E., Tham, I.W.K., Tan, C.H., Poh, C.L.: Super-resolution in magnetic resonance imaging: a review. Concepts Magn. Resona.-Part A 40(6), 306–325 (2012)
Dagia, C., Ditchfield, M.: 3T MRI in paediatrics: challenges and clinical applications. Eur. J. Radiol. 68(2), 309–319 (2008)
Resnick, S.M., Goldszal, A.F., Davatzikos, C., Golski, S., Kraut, M.A., Metter, E.J., Zonderman, A.B.: One-year age changes in MRI brain volumes in older adults. Cereb. Cortex 10(5), 464 (2000)
Zhang, M., Nie, H., Pei, Y., Tao, L.: Volume reconstruction for MRI. In: Proceedings of International Conference on Pattern Recognition, pp. 3351–3356, August 2014
Iwamoto, Y., Han, X.H., Sasatani, S., Taniguchi, K., Xiong, W., Chen, Y.W.: Super-resolution of MR volumetric images using sparse representation and self-similarity. In: Proceedings of the 21st International Conference on Pattern Recognition, pp. 3758–3761, November 2012
Greenspan, H., Oz, G., Kiryati, N., Peled, S.: MRI inter-slice reconstruction using super-resolution. Magn. Reson. Imaging 20(5), 437–446 (2002)
Greenspan, H., Oz, G., Kiryati, N., Peled, S.: Super-resolution in MRI. In: Proceedings IEEE International Symposium on Biomedical Imaging, pp. 943–946 (2002)
Hefnawy, A.A.: An efficient super-resolution approach for obtaining isotropic 3-D imaging using 2-D multi-slice MRI. Egypt. Inform. J. 14(2), 117–123 (2013)
Rueda, A., Malpica, N., Romero, E.: Single-image super-resolution of brain MR images using overcomplete dictionaries. Med. Image Anal. 17(1), 113–132 (2013)
Bahrami, K., Shi, F., Zong, X., Shin, H.W., An, H., Shen, D.: Reconstruction of 7T-like images from 3T MRI. IEEE Trans. Med. Imaging 35(9), 2085–2097 (2016)
Rousseau, F.: Brain hallucination. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 497–508. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88682-2_38
Manjn, J.V., Coup, P., Buades, A., Fonov, V., Collins, D.L., Robles, M.: Non-local MRI upsampling. Med. Image Anal. 14(6), 784–792 (2010)
Mandal, S., Bhavsar, A., Sao, A.K.: Super-resolving a single intensity/range image via non-local means and sparse representation. In: Proceedings of the Indian Conference on Computer Vision Graphics and Image Processing, (ICVGIP), pp. 1–8, December 2014
Mandal, S., Sao, A.K.: Edge preserving single image super resolution in sparse environment. In: IEEE International Conference on Image Processing, pp. 967–971, September 2013
Yang, J., Wang, Z., Lin, Z., Cohen, S., Huang, T.: Coupled dictionary training for image super-resolution. IEEE Trans. Image Process. 21(8), 3467–3478 (2012)
Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19(11), 2861–2873 (2010)
Elad, M., Figueiredo, M.A., Ma, Y.: On the role of sparse and redundant representations in image processing. Proc. IEEE 98(6), 972–982 (2010)
Dong, W., Li, X., Zhang, L., Shi, G.: Sparsity-based image denoising via dictionary learning and structural clustering. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 457–464 (2011)
Elad, M., Figueiredo, M.A.T., Ma, Y.: On the role of sparse and redundant representations in image processing. Proc. IEEE 98(6), 972–982 (2010)
Bai, Y., Han, X., Prince, J.L.: Super-resolution reconstruction of MR brain images. In: Proceedings of the 38th Annual Conference on Information Sciences and Systems (CISS 2004) (2004)
Kwan, R.K.S., Evans, A.C., Pike, G.B.: MRI simulation-based evaluation of image-processing and classification methods. IEEE Trans. Med. Imaging 18(11), 1085–1097 (1999)
Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004)
Cocosco, C.A., Kollokian, V., Kwan, R.K.S., Pike, G.B., Evans, A.C.: Brainweb: online interface to a 3D MRI simulated brain database. NeuroImage 5, 425 (1997)
Hore, A., Ziou, D.: Image quality metrics: PSNR vs. SSIM. In: 20th International Conference on Pattern Recognition, pp. 2366–2369, August 2010
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Kaur, P., Mandal, S., Sao, A.K. (2017). Significance of Magnetic Resonance Image Details in Sparse Representation Based Super Resolution. In: Valdés Hernández, M., González-Castro, V. (eds) Medical Image Understanding and Analysis. MIUA 2017. Communications in Computer and Information Science, vol 723. Springer, Cham. https://doi.org/10.1007/978-3-319-60964-5_53
Download citation
DOI: https://doi.org/10.1007/978-3-319-60964-5_53
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-60963-8
Online ISBN: 978-3-319-60964-5
eBook Packages: Computer ScienceComputer Science (R0)