Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Cervical Nuclei Classification: Feature Engineering Versus Deep Belief Network

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2017)

Abstract

A database of 9405 cervical cells is introduced, which was collected from Pap-smear images: 1791 cells are pathologic cases (two types), the rest are healthy cases (three types). Their cell nuclei are classified using two methods: once with a traditional feature engineering approach using in particular iso-contours; and once with a Deep Belief Network made of Restricted Boltzmann Machines. The Deep Belief Network returns higher accuracy, but not in all classification tasks. The retrieval results show that nuclei information alone can be probably sufficient for a computer-assistive diagnosis of Pap-smear images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cheng, J., Rajapakse, J.C.: Segmentation of clustered nuclei with shape markers and marking function. IEEE Trans. Biomed. Eng. 56(3), 741–748 (2009)

    Article  Google Scholar 

  2. Duanggate, C., Uyyanonvara, B., Koanantakul, T.: A review of image analysis and pattern classification techniques for automatic pap smear screening process. In: The 2008 International Conference on Embedded Systems and Intelligent Technology, 27–29 February 2008

    Google Scholar 

  3. Gençtav, A., Aksoy, S., Önder, S.: Unsupervised segmentation and classification of cervical cell images. Pattern Recogn. 45(12), 4151–4168 (2012)

    Article  Google Scholar 

  4. Guo, P., Banerjee, K., Stanley, R.J., Long, R., Antani, S., Thoma, G., Zuna, R., Frazier, S.R., Moss, R.H., Stoecker, W.V.: Nuclei-based features for uterine cervical cancer histology image analysis with fusion-based classification. IEEE J. Biomed. Health Inform. 20(6), 1595–1607 (2016)

    Article  Google Scholar 

  5. Hinton, G.E.: A practical guide to training restricted Boltzmann machines. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, 2nd edn, pp. 599–619. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35289-8_32

    Chapter  Google Scholar 

  6. Li, K., Lu, Z., Liu, W., Yin, J.: Cytoplasm and nucleus segmentation in cervical smear images using radiating GVF snake. Pattern Recogn. 45(4), 1255–1264 (2012)

    Article  Google Scholar 

  7. Lu, Z., Carneiro, G., Bradley, A.P.: Automated nucleus and cytoplasm segmentation of overlapping cervical cells. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8149, pp. 452–460. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40811-3_57

    Chapter  Google Scholar 

  8. Marinakis, Y., Dounias, G., Jantzen, J.: Pap smear diagnosis using a hybrid intelligent scheme focusing on genetic algorithm based feature selection and nearest neighbor classification. Comput. Biol. Med. 39(1), 69–78 (2009)

    Article  Google Scholar 

  9. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image Vis. Comput. 22(10), 761–767 (2004)

    Article  Google Scholar 

  10. Moshavegh, R., Bejnordi, B.E., Mehnert, A., Sujathan, K., Malm, P., Bengtsson, E.: Automated segmentation of free-lying cell nuclei in pap smears for malignancy-associated change analysis. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5372–5375. IEEE (2012)

    Google Scholar 

  11. Nance, K.V.: Evolution of pap testing at a community hospital-a ten year experience. Diagn. Cytopathol. 35(3), 148–153 (2007)

    Article  Google Scholar 

  12. Plissiti, M.E., Nikou, C.: Cervical cell classification based exclusively on nucleus features. In: Campilho, A., Kamel, M. (eds.) ICIAR 2012. LNCS, vol. 7325, pp. 483–490. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31298-4_57

    Chapter  Google Scholar 

  13. Plissiti, M.E., Nikou, C., Charchanti, A.: Combining shape, texture and intensity features for cell nuclei extraction in pap smear images. Pattern Recogn. Lett. 32(6), 838–853 (2011)

    Article  Google Scholar 

  14. Rasche, C., Oprisescu, S., Sultana, A., Radulescu, T.: Analysis of pap smear images with ISO- and edge-contours. In: IEEE 11th International Conference on Intelligent Computer Communication and Processing, Cluj-Napoca, RO, pp. 375–378 (2015)

    Google Scholar 

  15. Soille, P.: Morphological Image Analysis: Principles and Applications. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  16. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Su, J., Xu, X., He, Y., Song, J.: Automatic detection of cervical cancer cells by a two-level cascade classification system. Anal. Cell. Pathol. 2016 (2016). Article no. 9535027

    Google Scholar 

  18. Sulaiman, S.N., Isa, M., Ashidi, N., Othman, N.H.: Semi-automated pseudo colour features extraction technique for cervical cancer’s pap smear images. Int. J. Knowl.-Based Intell. Eng. Syst. 15(3), 131–143 (2011)

    Google Scholar 

  19. Weintraub, J., Morabia, A.: Efficacy of a liquid-based thin layer method for cervical cancer screening in a population with a low incidence of cervical cancer. Diagn. Cytopathol. 22(1), 52–59 (2000)

    Article  Google Scholar 

  20. Yusoff, I.A., Isa, N.A.M., Othman, N.H., Sulaiman, S.N., Jusman, Y.: Performance of neural network architectures: cascaded MLP versus extreme learning machine on cervical cell image classification. In: 2010 10th International Conference on Information Sciences Signal Processing and their Applications (ISSPA), pp. 308–311. IEEE (2010)

    Google Scholar 

  21. Zhang, D., Lu, G.: Study and evaluation of different fourier methods for image retrieval. Image Vis. Comput. 23, 33–49 (2005)

    Article  Google Scholar 

Download references

Acknowledgment

This work was fully supported by the Joint Applied Research Projects “Intelligent System for Automatic Assistance of Cervical Cancer Diagnosis”, grant number: PN-II-PT-PCCA-2013-4-0202, funded by Executive Unit for Higher Education, Research, Development and Innovation Funding (UEFISCDI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Rasche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Rasche, C., Ţigăneşteanu, C., Neghină, M., Sultana, A. (2017). Cervical Nuclei Classification: Feature Engineering Versus Deep Belief Network. In: Valdés Hernández, M., González-Castro, V. (eds) Medical Image Understanding and Analysis. MIUA 2017. Communications in Computer and Information Science, vol 723. Springer, Cham. https://doi.org/10.1007/978-3-319-60964-5_76

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60964-5_76

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60963-8

  • Online ISBN: 978-3-319-60964-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics