Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Mining Spatio-Temporal Patterns of Periodic Changes in Climate Data

  • Conference paper
  • First Online:
New Frontiers in Mining Complex Patterns (NFMCP 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10312))

Included in the following conference series:

Abstract

The climate changes have attracted always interest because they may have great impact on the life on Earth and living beings. Computational solutions may be useful both for the prediction of the climate changes and for their characterization, perhaps in association with other phenomena. Due to the cyclic and seasonal nature of many climate processes, studying their repeatability may be relevant and, in many cases, determinant. In this paper, we investigate the task of determining changes of the weather conditions, which are periodically repeated over time and space. We introduce the spatio-temporal patterns of periodic changes and propose a computational solution to discover them. These patterns allows us to represent spatial regions with same periodic changes. The method works on a grid-based data representation and relies on a time-windows analysis model to detect periodic changes in the grid cells. Then, the cells with same changes are selected to form a spatial region of interest. The usefulness of the method is demonstrated on a real-world dataset collecting weather conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Appice, A., Ciampi, A., Malerba, D.: Summarizing numeric spatial data streams by trend cluster discovery. Data Min. Knowl. Discov. 29(1), 84–136 (2015)

    Article  MathSciNet  Google Scholar 

  2. Boriah, S., Kumar, V., Steinbach, M., Potter, C., Klooster, S.: Land cover change detection: a case study. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2008, pp. 857–865. ACM, New York (2008)

    Google Scholar 

  3. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection for discrete sequences: a survey. IEEE Trans. Knowl. Data Eng. 24(5), 823–839 (2012)

    Article  Google Scholar 

  4. Dong, G., Li, J.: Efficient mining of emerging patterns: discovering trends and differences. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 43–52 (1999)

    Google Scholar 

  5. Faghmous, J.H., Kumar, V.: Spatio-temporal data mining for climate data: advances, challenges, and opportunities. In: Chu, W.W. (ed.) Data Mining and Knowledge Discovery for Big Data. Studies in Big Data, vol. 1, pp. 83–116. Springer, Heidelberg (2014). doi:10.1007/978-3-642-40837-3_3

    Chapter  Google Scholar 

  6. Günnemann, S., Kremer, H., Laufkötter, C., Seidl, T.: Tracing evolving subspace clusters in temporal climate data. Data Min. Knowl. Discov. 24(2), 387–410 (2012)

    Article  MathSciNet  Google Scholar 

  7. Hai, P.N., Poncelet, P., Teisseire, M.: GeT_Move: an efficient and unifying spatio-temporal pattern mining algorithm for moving objects. In: Hollmén, J., Klawonn, F., Tucker, A. (eds.) IDA 2012. LNCS, vol. 7619, pp. 276–288. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34156-4_26

    Chapter  Google Scholar 

  8. Kleynhans, W., Salmon, B.P., Wessels, K.J.: A novel spatio-temporal change detection approach using hyper-temporal satellite data. In: 2014 IEEE Geoscience and Remote Sensing Symposium, IGARSS 2014, Quebec City, QC, Canada, 13–18 July 2014, pp. 4208–4211. IEEE (2014)

    Google Scholar 

  9. Lian, J., McGuire, M.P.: Mining persistent and dynamic spatio-temporal change in global climate data. In: Latifi, S. (ed.) Information Technology: New Generations. AISC, vol. 448, pp. 881–891. Springer, Cham (2016). doi:10.1007/978-3-319-32467-8_76

    Chapter  Google Scholar 

  10. Loglisci, C., Balech, B., Malerba, D.: Discovering variability patterns for change detection in complex phenotype data. In: Esposito, F., Pivert, O., Hacid, M.-S., Raś, Z.W., Ferilli, S. (eds.) ISMIS 2015. LNCS (LNAI), vol. 9384, pp. 9–18. Springer, Cham (2015). doi:10.1007/978-3-319-25252-0_2

    Chapter  Google Scholar 

  11. Loglisci, C., Malerba, D.: Mining periodic changes in complex dynamic data through relational pattern discovery. In: Ceci, M., Loglisci, C., Manco, G., Masciari, E., Ras, Z.W. (eds.) NFMCP 2015. LNCS (LNAI), vol. 9607, pp. 76–90. Springer, Cham (2016). doi:10.1007/978-3-319-39315-5_6

    Google Scholar 

  12. Loglisci, C., Malerba, D.: Leveraging temporal autocorrelation of historical data for improving accuracy in network regression. Stat. Anal. Data Min. 10(1), 40–53 (2017)

    Article  Google Scholar 

  13. McGuire, M.P., Janeja, V.P., Gangopadhyay, A.: Mining trajectories of moving dynamic spatio-temporal regions in sensor datasets. Data Min. Knowl. Discov. 28(4), 961–1003 (2014)

    Article  MathSciNet  Google Scholar 

  14. Mooney, C.H., Roddick, J.F.: Sequential pattern mining - approaches and algorithms. ACM Comput. Surv. 45(2), 19:1–19:39 (2013)

    Article  MATH  Google Scholar 

  15. Simons, R.A.: ERDDAP - the environmental research division’s data access program. NOAA/NMFS/SWFSC/ERD, Pacific Grove (2011). http://coastwatch.pfeg.noaa.gov/erddap

  16. Tan, P., Steinbach, M., Kumar, V., Potter, C., Klooster, S., Torregrosa, A.: Finding spatio-temporal patterns in earth science data. In: Proceedings of KDD Workshop on Temporal Data Mining (2001)

    Google Scholar 

  17. Wilby, R.L., Wigley, T.M.L.: Downscaling general circulation model output: a review of methods and limitations. Prog. Phys. Geogr. 21(4), 530–548 (1997)

    Article  Google Scholar 

  18. Yan, X., Han, J., Afshar, R.: CloSpan: mining closed sequential patterns in large databases. In: Proceedings of the Third SIAM International Conference on Data Mining, CA, USA, 1–3 May 2003, pp. 166–177 (2003)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of the European Commission through the project MAESTRA - Learning from Massive, Incompletely annotated, and Structured Data (Grant number ICT-2013-612944).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corrado Loglisci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Loglisci, C., Ceci, M., Impedovo, A., Malerba, D. (2017). Mining Spatio-Temporal Patterns of Periodic Changes in Climate Data. In: Appice, A., Ceci, M., Loglisci, C., Masciari, E., Raś, Z. (eds) New Frontiers in Mining Complex Patterns. NFMCP 2016. Lecture Notes in Computer Science(), vol 10312. Springer, Cham. https://doi.org/10.1007/978-3-319-61461-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61461-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61460-1

  • Online ISBN: 978-3-319-61461-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics