Abstract
The climate changes have attracted always interest because they may have great impact on the life on Earth and living beings. Computational solutions may be useful both for the prediction of the climate changes and for their characterization, perhaps in association with other phenomena. Due to the cyclic and seasonal nature of many climate processes, studying their repeatability may be relevant and, in many cases, determinant. In this paper, we investigate the task of determining changes of the weather conditions, which are periodically repeated over time and space. We introduce the spatio-temporal patterns of periodic changes and propose a computational solution to discover them. These patterns allows us to represent spatial regions with same periodic changes. The method works on a grid-based data representation and relies on a time-windows analysis model to detect periodic changes in the grid cells. Then, the cells with same changes are selected to form a spatial region of interest. The usefulness of the method is demonstrated on a real-world dataset collecting weather conditions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Appice, A., Ciampi, A., Malerba, D.: Summarizing numeric spatial data streams by trend cluster discovery. Data Min. Knowl. Discov. 29(1), 84–136 (2015)
Boriah, S., Kumar, V., Steinbach, M., Potter, C., Klooster, S.: Land cover change detection: a case study. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2008, pp. 857–865. ACM, New York (2008)
Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection for discrete sequences: a survey. IEEE Trans. Knowl. Data Eng. 24(5), 823–839 (2012)
Dong, G., Li, J.: Efficient mining of emerging patterns: discovering trends and differences. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 43–52 (1999)
Faghmous, J.H., Kumar, V.: Spatio-temporal data mining for climate data: advances, challenges, and opportunities. In: Chu, W.W. (ed.) Data Mining and Knowledge Discovery for Big Data. Studies in Big Data, vol. 1, pp. 83–116. Springer, Heidelberg (2014). doi:10.1007/978-3-642-40837-3_3
Günnemann, S., Kremer, H., Laufkötter, C., Seidl, T.: Tracing evolving subspace clusters in temporal climate data. Data Min. Knowl. Discov. 24(2), 387–410 (2012)
Hai, P.N., Poncelet, P., Teisseire, M.: GeT_Move: an efficient and unifying spatio-temporal pattern mining algorithm for moving objects. In: Hollmén, J., Klawonn, F., Tucker, A. (eds.) IDA 2012. LNCS, vol. 7619, pp. 276–288. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34156-4_26
Kleynhans, W., Salmon, B.P., Wessels, K.J.: A novel spatio-temporal change detection approach using hyper-temporal satellite data. In: 2014 IEEE Geoscience and Remote Sensing Symposium, IGARSS 2014, Quebec City, QC, Canada, 13–18 July 2014, pp. 4208–4211. IEEE (2014)
Lian, J., McGuire, M.P.: Mining persistent and dynamic spatio-temporal change in global climate data. In: Latifi, S. (ed.) Information Technology: New Generations. AISC, vol. 448, pp. 881–891. Springer, Cham (2016). doi:10.1007/978-3-319-32467-8_76
Loglisci, C., Balech, B., Malerba, D.: Discovering variability patterns for change detection in complex phenotype data. In: Esposito, F., Pivert, O., Hacid, M.-S., Raś, Z.W., Ferilli, S. (eds.) ISMIS 2015. LNCS (LNAI), vol. 9384, pp. 9–18. Springer, Cham (2015). doi:10.1007/978-3-319-25252-0_2
Loglisci, C., Malerba, D.: Mining periodic changes in complex dynamic data through relational pattern discovery. In: Ceci, M., Loglisci, C., Manco, G., Masciari, E., Ras, Z.W. (eds.) NFMCP 2015. LNCS (LNAI), vol. 9607, pp. 76–90. Springer, Cham (2016). doi:10.1007/978-3-319-39315-5_6
Loglisci, C., Malerba, D.: Leveraging temporal autocorrelation of historical data for improving accuracy in network regression. Stat. Anal. Data Min. 10(1), 40–53 (2017)
McGuire, M.P., Janeja, V.P., Gangopadhyay, A.: Mining trajectories of moving dynamic spatio-temporal regions in sensor datasets. Data Min. Knowl. Discov. 28(4), 961–1003 (2014)
Mooney, C.H., Roddick, J.F.: Sequential pattern mining - approaches and algorithms. ACM Comput. Surv. 45(2), 19:1–19:39 (2013)
Simons, R.A.: ERDDAP - the environmental research division’s data access program. NOAA/NMFS/SWFSC/ERD, Pacific Grove (2011). http://coastwatch.pfeg.noaa.gov/erddap
Tan, P., Steinbach, M., Kumar, V., Potter, C., Klooster, S., Torregrosa, A.: Finding spatio-temporal patterns in earth science data. In: Proceedings of KDD Workshop on Temporal Data Mining (2001)
Wilby, R.L., Wigley, T.M.L.: Downscaling general circulation model output: a review of methods and limitations. Prog. Phys. Geogr. 21(4), 530–548 (1997)
Yan, X., Han, J., Afshar, R.: CloSpan: mining closed sequential patterns in large databases. In: Proceedings of the Third SIAM International Conference on Data Mining, CA, USA, 1–3 May 2003, pp. 166–177 (2003)
Acknowledgements
The authors would like to acknowledge the support of the European Commission through the project MAESTRA - Learning from Massive, Incompletely annotated, and Structured Data (Grant number ICT-2013-612944).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Loglisci, C., Ceci, M., Impedovo, A., Malerba, D. (2017). Mining Spatio-Temporal Patterns of Periodic Changes in Climate Data. In: Appice, A., Ceci, M., Loglisci, C., Masciari, E., Raś, Z. (eds) New Frontiers in Mining Complex Patterns. NFMCP 2016. Lecture Notes in Computer Science(), vol 10312. Springer, Cham. https://doi.org/10.1007/978-3-319-61461-8_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-61461-8_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-61460-1
Online ISBN: 978-3-319-61461-8
eBook Packages: Computer ScienceComputer Science (R0)