Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Systematic Study of Cache Side Channels Across AES Implementations

  • Conference paper
  • First Online:
Engineering Secure Software and Systems (ESSoS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10379))

Included in the following conference series:

  • 1346 Accesses

Abstract

While the AES algorithm is regarded as secure, many implementations of AES are prone to cache side-channel attacks. The lookup tables traditionally used in AES implementations for storing precomputed results provide speedup for encryption and decryption. How such lookup tables are used is known to affect the vulnerability to side channels, but the concrete effects in actual AES implementations are not yet sufficiently well understood. In this article, we analyze and compare multiple off-the-shelf AES implementations wrt. their vulnerability to cache side-channel attacks. By applying quantitative program analysis techniques in a systematic fashion, we shed light on the influence of implementation techniques for AES on cache-side-channel leakage bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We round all leakage bounds up to one decimal place and truncate them to the maximum leakage of 256 bit (128 bit message and 128 bit key) throughout the article.

  2. 2.

    To support the reader in reading such diagrams, we connect the leakage bounds computed for adjacent cache sizes and the same attacker model by dashed lines.

  3. 3.

    For \(\mathrm {LibTomCrypt}\) AES and 2 KB cache size, the analysis ran out of memory.

  4. 4.

    Without cache locking, the preloaded table entries might be evicted from the cache by other processes [21, 22].

  5. 5.

    This can be realized using static cache locking if the cache size exceeds the total size of tables. One could consider dynamic cache locking [27] if the cache is too small.

  6. 6.

    The sequential composition of the functions crypto_stream_beforenm (beforenm.c) and crypto_stream_xor_afternm (xor_afternm.c) from NaCl in version 20110221.

References

  1. Acıiçmez, O., Koç, Ç.K.: Trace-driven cache attacks on AES (short paper). In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 112–121. Springer, Heidelberg (2006). doi:10.1007/11935308_9

    Chapter  Google Scholar 

  2. A.R.M Ltd.: ARM buys Leading IoT Security Company Offspark as it Expands its mbed Platform (2015). https://www.arm.com/about/newsroom/arm-buys-leading-iot-security-company-offspark-as-it-expands-its-mbed-platform.php. Accessed 11 Feb 2017

  3. A.R.M Ltd.: mbed TLS (Version 2.2.1-gpl) (2016). https://tls.mbed.org/download/mbedtls-2.2.1-gpl.tgz. Accessed 28 Jul 2016

  4. Backes, M., Köpf, B., Rybalchenko, A.: Automatic discovery and quantification of information leaks. In: S&P, pp. 141–153 (2009)

    Google Scholar 

  5. Bernstein, D.J.: Cache-timing attacks on AES. Technical report, University of Illinois at Chicago (2005)

    Google Scholar 

  6. Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Hevia, A., Neven, G. (eds.) LATINCRYPT 2012. LNCS, vol. 7533, pp. 159–176. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33481-8_9

    Chapter  Google Scholar 

  7. Brickell, E., Graunke, G., Neve, M., Seifert, J.: Software mitigations to hedge AES against cache-based software side channel vulnerabilities. IACR Cryptology ePrint Archive, pp. 1–17 (2006)

    Google Scholar 

  8. Committee on National Security Systems: CNSS Policy No. 15: National Information Assurance Policy on the Use of Public Standards for the Secure Sharing of Information Among National Security Systems (2016). https://www.cnss.gov/CNSS/openDoc.cfm?1858/J1y8IPFvRRvn+ZZBw==. Accessed 29 Dec 2016

  9. Crane, S., Homescu, A., Brunthaler, S., Larsen, P., Franz, M.: Thwarting cache side-channel attacks through dynamic software diversity. In: NDSS (2015)

    Google Scholar 

  10. Daemen, J., Rijmen, V.: AES submission document on Rijndael, Version 2 (1999). http://csrc.nist.gov/archive/aes/rijndael/Rijndael.pdf

  11. Doychev, G., Feld, D., Köpf, B., Mauborgne, L., Reineke, J.: CacheAudit: a tool for the static analysis of cache side channels. In: USENIX Security, pp. 431–446 (2013)

    Google Scholar 

  12. Doychev, G., Köpf, B., Mauborgne, L., Reineke, J.: Cacheaudit: a tool for the static analysis of cache side channels. ACM Trans. Inf. Syst. Secur. 18, 4:1–4:32 (2015)

    Article  Google Scholar 

  13. Barker, E.: Nist special publication 800–57 part 1, revision 4: Recommendation for key management - part 1: General (2016). http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf

  14. Ge, Q., Yarom, Y., Cock, D., Heiser, G.: A survey of microarchitectural timing attacks and countermeasures on contemporary hardware. J. Cryptogr. Eng., 1–27 (2016)

    Google Scholar 

  15. Gullasch, D., Bangerter, E., Krenn, S.: Cache games - bringing access-based cache attacks on AES to practice. In: S&P, pp. 490–505 (2011)

    Google Scholar 

  16. Heusser, J., Malacaria, P.: Quantifying information leaks in software. In: ACSAC, pp. 261–269 (2010)

    Google Scholar 

  17. Corporation, I.: Intel®64 and IA-32 Architectures Optimization Reference Manual. Order Number: 248966–032 (2016)

    Google Scholar 

  18. Irazoqui, G., Eisenbarth, T., Sunar, B.: S$A: a shared cache attack that works across cores and defies VM sandboxing - and its application to AES. In: S & P, pp. 591–604 (2015)

    Google Scholar 

  19. Irazoqui, G., Inci, M.S., Eisenbarth, T., Sunar, B.: Wait a minute! a fast, cross-VM attack on AES. In: Stavrou, A., Bos, H., Portokalidis, G. (eds.) RAID 2014. LNCS, vol. 8688, pp. 299–319. Springer, Cham (2014). doi:10.1007/978-3-319-11379-1_15

    Google Scholar 

  20. Kim, T., Peinado, M., Mainar-Ruiz, G.: STEALTHMEM: system-level protection against cache-based side channel attacks in the cloud. In: USENIX Security, pp. 189–204 (2012)

    Google Scholar 

  21. Kong, J., Aciiçmez, O., Seifert, J.P., Zhou, H.: Deconstructing new cache designs for thwarting software cache-based side channel attacks. In: CSAW, pp. 25–34 (2008)

    Google Scholar 

  22. Kong, J., Aciiçmez, O., Seifert, J.P., Zhou, H.: Hardware-software integrated approaches to defend against software cache-based side channel attacks. In: HPCA, pp. 393–404 (2009)

    Google Scholar 

  23. Köpf, B., Rybalchenko, A.: Approximation and randomization for quantitative information-flow analysis. In: CSF, pp. 3–14 (2010)

    Google Scholar 

  24. Käsper, E., Schwabe, P.: Faster and timing-attack resistant AES-GCM. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 1–17. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04138-9_1

    Chapter  Google Scholar 

  25. Lipp, M., Gruss, D., Spreitzer, R., Maurice, C., Mangard, S.: ARMageddon: cache attacks on mobile devices. In: USENIX Security, pp. 549–564 (2016)

    Google Scholar 

  26. Massey, J.L.: Guessing and entropy. In: ISIT, p. 204 (1994)

    Google Scholar 

  27. Mittal, S.: A survey of techniques for cache locking. ACM Trans. Des. Automat. Electron. Syst., 49:1–49:24 (2016)

    Google Scholar 

  28. Möller, N.: Nettle (Version 3.2) (2016). https://ftp.gnu.org/gnu/nettle/nettle-3.2.tar.gz. Accessed 28 Jul 2016

  29. Newsome, J., McCamant, S., Song, D.: Measuring channel capacity to distinguish undue influence. In: PLAS, pp. 73–85 (2009)

    Google Scholar 

  30. OpenSSL Software Foundation: OpenSSL (Version 1.0.1t) (2016). https://www.openssl.org/source/openssl-1.0.1t.tar.gz. Accessed 28 Jul 2016

  31. OpenVPN Technologies, Inc. HOWTO (2017). https://openvpn.net/index.php/open-source/documentation/howto.html. Accessed 16 Feb 2017

  32. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20. Springer, Heidelberg (2006). doi:10.1007/11605805_1

    Chapter  Google Scholar 

  33. Page, D.: Theoretical Use of Cache Memory as a Cryptanalytic Side-Channel. IACR Cryptology ePrint Archive, pp. 1–23 (2002)

    Google Scholar 

  34. Page, D.: Defending Against Cache-Based Side-Channel Attacks. Information Security Technical Report, pp. 30–44 (2003)

    Google Scholar 

  35. Page, D.: Partitioned cache architecture as a side-channel defence mechanism. IACR Cryptology ePrint Archive, pp. 1–14 (2005)

    Google Scholar 

  36. Pasareanu, C.S., Phan, Q., Malacaria, P.: Multi-run side-channel analysis using symbolic execution and max-SMT. In: CSF, pp. 387–400 (2016)

    Google Scholar 

  37. libtom projects: LibTomCrypt (Version 1.17) (2010). https://github.com/libtom/libtomcrypt/archive/1.17.tar.gz. Accessed 28 Jul 2016

  38. Smith, G.: On the foundations of quantitative information flow. In: FOSSACS, pp. 288–302 (2009)

    Google Scholar 

  39. Tiri, K., Acıiçmez, O., Neve, M., Andersen, F.: An analytical model for time-driven cache attacks. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 399–413. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74619-5_25

    Chapter  Google Scholar 

  40. Tromer, E., Osvik, D.A., Shamir, A.: Efficient cache attacks on AES, and countermeasures. J. Cryptology 23(1), 37–71 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang, Z., Lee, R.B.: A novel cache architecture with enhanced performance and security. In: MICRO, pp. 83–93 (2008)

    Google Scholar 

  42. Yarom, Y., Falkner, K.: FLUSH+RELOAD: a high resolution, low noise, L3 cache side-channel attack. In: USENIX Security, pp. 719–732 (2014)

    Google Scholar 

Download references

Acknowledgements

We thank Clémentine Maurice and the anonymous reviewers for helpful comments. We also thank Artem Starostin for inspiring discussions in the initial phase of this project and Xucheng Yin for his contributions to CacheAudit. This work has been funded by the DFG as part of the project Secure Refinement of Cryptographic Algorithms (E3) within the CRC 1119 CROSSING and was supported by Ramón y Cajal grant RYC-2014-16766, Spanish projects TIN2012-39391-C04-01 StrongSoft and TIN2015-70713-R DEDETIS, and Madrid regional project S2013/ICE-2731 N-GREENS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Heiko Mantel or Alexandra Weber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Mantel, H., Weber, A., Köpf, B. (2017). A Systematic Study of Cache Side Channels Across AES Implementations. In: Bodden, E., Payer, M., Athanasopoulos, E. (eds) Engineering Secure Software and Systems. ESSoS 2017. Lecture Notes in Computer Science(), vol 10379. Springer, Cham. https://doi.org/10.1007/978-3-319-62105-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62105-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62104-3

  • Online ISBN: 978-3-319-62105-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics