Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Faster Randomized Worst-Case Update Time for Dynamic Subgraph Connectivity

  • Conference paper
  • First Online:
Algorithms and Data Structures (WADS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10389))

Included in the following conference series:

Abstract

Real-world networks are prone to breakdowns. Typically in the underlying graph G, besides the insertion or deletion of edges, the set of active vertices changes overtime. A vertex might work actively, or it might fail, and gets isolated temporarily. The active vertices are grouped as a set S. The set S is subjected to updates, i.e., a failed vertex restarts, or an active vertex fails, and gets deleted from S. Dynamic subgraph connectivity answers the queries on connectivity between any two active vertices in the subgraph of G induced by S. The problem is solved by a dynamic data structure, which supports the updates and answers the connectivity queries. In the general undirected graph, we propose a randomized data structure, which has \(\widetilde{O}(m^{3/4})\) worst-case update time. The former best results for it include \(\widetilde{O}(m^{2/3})\) deterministic amortized update time by Chan, Pǎtraşcu and Roditty [4], \(\widetilde{O}(m^{4/5})\) by Duan [8] and \(\widetilde{O}(\sqrt{mn})\) by Baswana, Chaudhury, Choudhary and Khan [2] deterministic worst-case update time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abboud, A., Williams, V.V.: Popular conjectures imply strong lower bounds for dynamic problems. In: IEEE 55th Annual Symposium on Foundations of Computer Science, pp. 434–443. IEEE (2014)

    Google Scholar 

  2. Baswana, S., Chaudhury, S.R., Choudhary, K., Khan, S.: Dynamic DFS in undirected graphs: breaking the \(O(m)\) barrier. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 730–739. SIAM (2016)

    Google Scholar 

  3. Chan, T.M.: Dynamic subgraph connectivity with geometric applications. In: Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing, pp. 7–13. ACM (2002)

    Google Scholar 

  4. Chan, T.M., Pǎtraşcu, M., Roditty, L.: Dynamic connectivity: Connecting to networks and geometry. SIAM Journal on Computing 40(2), 333–349 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, L., Duan, R., Wang, R., Zhang, H.: Improved algorithms for maintaining DFS tree in undirected graphs. CoRR, abs/1607.04913 (2016)

    Google Scholar 

  6. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. Journal of Symbolic Computation 9(3), 251–280 (1990). Computational algebraic complexity editorial

    Article  MathSciNet  MATH  Google Scholar 

  7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. The MIT Press (2009)

    Google Scholar 

  8. Duan, R.: New data structures for subgraph connectivity. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 201–212. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14165-2_18

    Chapter  Google Scholar 

  9. Duan, R., Zhang, L.: Faster worst-case update time for dynamic subgraph connectivity. CoRR, abs/1611.09072 (2016)

    Google Scholar 

  10. Eppstein, D., Galil, Z., Italiano, G.F., Nissenzweig, A.: Sparsification-a technique for speeding up dynamic graph algorithms. Journal of the ACM 44(5), 669–696 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Greg, N.: Frederickson.: Data structures for on-line updating of minimum spanning trees, with applications. SIAM Journal on Computing 14(4), 781–798 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  12. Frigioni, D., Italiano, G.F.: Dynamically switching vertices in planar graphs. Algorithmica 28(1), 76–103 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gibb, D., Kapron, B.M., King, V., Thorn, N.: Dynamic graph connectivity with improved worst case update time and sublinear space. CoRR, abs/1509.06464 (2015)

    Google Scholar 

  14. Henzinger, M., Krinninger, S., Nanongkai, D., Saranurak, T.: Unifying and strengthening hardness for dynamic problems via the online matrix-vector multiplication conjecture. In: Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, pp. 21–30. ACM (2015)

    Google Scholar 

  15. Henzinger, M.R., King, V.: Randomized fully dynamic graph algorithms with polylogarithmic time per operation. Journal of the ACM 46(4), 502–516 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Holm, J., De Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. Journal of the ACM 48(4), 723–760 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Huang, S.-E., Huang, D., Kopelowitz, T., Pettie, S.: Fully dynamic connectivity in \(O(\log n(\log \log n)^2)\) amortized expected time. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM (2017)

    Google Scholar 

  18. Kapron, B.M., King, V., Mountjoy, B.: Dynamic graph connectivity in polylogarithmic worst case time. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1131–1142. SIAM (2013)

    Google Scholar 

  19. Kejlberg-Rasmussen, C., Kopelowitz, T., Pettie, S., Thorup, M.: Faster worst case deterministic dynamic connectivity. In: Proceedings of the Twenty-Fourth Annual European Symposium on Algorithms (2016)

    Google Scholar 

  20. Nanongkai, D., Saranurak, T.: Dynamic spanning forest with worst-case update time: Adaptive, Las Vegas, and \(O(n^{1/2-\epsilon })\)-time. In: Proceedings of the Forty-Ninth Annual ACM on Symposium on Theory of Computing (2017)

    Google Scholar 

  21. Pǎtraşcu, M., Demaine, E.D.: Logarithmic lower bounds in the cell-probe model. SIAM Journal on Computing 35(4), 932–963 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Thorup, M.: Near-optimal fully-dynamic graph connectivity. In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, pp. 343–350 (2000)

    Google Scholar 

  23. Wang, Z.: An improved randomized data structure for dynamic graph connectivity. CoRR, abs/1510.04590 (2015)

    Google Scholar 

  24. Wulff-Nilsen, C.: Faster deterministic fully-dynamic graph connectivity. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1757–1769 (2013)

    Google Scholar 

  25. Wulff-Nilsen, C.: Fully-dynamic minimum spanning forest with improved worst-case update time. In: Proceedings of the Forty-Ninth Annual ACM on Symposium on Theory of Computing (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Duan, R., Zhang, L. (2017). Faster Randomized Worst-Case Update Time for Dynamic Subgraph Connectivity. In: Ellen, F., Kolokolova, A., Sack, JR. (eds) Algorithms and Data Structures. WADS 2017. Lecture Notes in Computer Science(), vol 10389. Springer, Cham. https://doi.org/10.1007/978-3-319-62127-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62127-2_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62126-5

  • Online ISBN: 978-3-319-62127-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics