Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Solving Sparse Differential Riccati Equations on Hybrid CPU-GPU Platforms

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2017 (ICCSA 2017)

Abstract

The numerical treatment of the linear-quadratic optimal control problem requires the solution of Riccati equations. In particular, the differential Riccati equations (DRE) is a key operation for the computation of the optimal control in the finite-time horizon case. In this work, we focus on large-scale problems governed by partial differential equations (PDEs) where, in order to apply a feedback control strategy, it is necessary to solve a large-scale DRE resulting from a spatial semi-discretization. To tackle this problem, we introduce an efficient implementation of the implicit Euler method and linearly implicit Euler method on hybrid CPU-GPU platforms for solving differential Riccati equations arising in a finite-time horizon linear-quadratic control problems. Numerical experiments validate our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mehrmann, V.: The Autonomous Linear Quadratic Control Problem: Theory and Numerical Solution. LNCIS, vol. 163. Springer, Heidelberg (1991). doi:10.1007/BFb0039443

    Book  MATH  Google Scholar 

  2. Curtain, R., Zwart, H.: An Introduction to Infinite-Dimensional Linear System Theory. Texts in Applied Mathematics. Springer, New York (1995)

    Book  MATH  Google Scholar 

  3. Lasiecka, I., Triggiani, R.: Control Theory for Partial Differential Equations: Continuous and Approximation Theories I: Abstract Parabolic Systems. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  4. Benner, P.: Solving large-scale control problems. IEEE Control Syst. Mag. 14(1), 44–59 (2004)

    Article  Google Scholar 

  5. Antoulas, A., Sorensen, D., Zhou, Y.: On the decay rate of Hankel singular values and related issues. Syst. Control Lett. 46, 323–342 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Grasedyck, L.: Existence of a low rank or H-matrix approximant to the solution of a Sylvester equation. Numer. Lin. Algebra Appl. 11, 371–389 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Penzl, T.: Eigenvalue decay bounds for solutions of Lyapunov equations: the symmetric case. Syst. Control Lett. 40, 139–144 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Sabino, J.: Solution of large-scale Lyapunov equations via the block modified smith method. Ph.D. thesis, Rice University, Houston, Texas (2007)

    Google Scholar 

  9. Abou-Kandil, H., Freiling, G., Ionescu, V., Jank, G.: Matrix Riccati Equations in Control and Systems Theory. Birkhäuser, Basel (2003)

    Book  MATH  Google Scholar 

  10. Ichikawa, A., Katayama, H.: Remarks on the time-varying \(H_\infty \) Riccati equations. Syst. Control Lett. 37(5), 335–345 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Petersen, I., Ugrinovskii, V., Savkin, A.V.: Robust Control Design Using \(H^{\infty }\) Methods. Springer, London (2000)

    Book  MATH  Google Scholar 

  12. Choi, C., Laub, A.: Efficient matrix-valued algorithms for solving stiff Riccati differential equations. IEEE Trans. Automat. Control 35, 770–776 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Davison, E., Maki, M.: The numerical solution of the matrix Riccati differential equation. IEEE Trans. Automat. Control 18, 71–73 (1973)

    Article  MATH  Google Scholar 

  14. Dieci, L.: Numerical integration of the differential Riccati equation and some related issues. SIAM J. Numer. Anal. 29(3), 781–815 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kenney, C., Leipnik, R.: Numerical integration of the differential matrix Riccati equation. IEEE Trans. Automat. Control AC–30, 962–970 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  16. Benner, P., Mena, H.: Numerical solution of the infinite-dimensional LQR-problem and the associated differential Riccati equations. J. Numer. Math. (2016, online)

    Google Scholar 

  17. Benner, P., Mena, H.: Rosenbrock methods for solving differential Riccati equations. IEEE Trans. Autom. Control 58, 2950–2957 (2013)

    Article  Google Scholar 

  18. Hansen, E., Stillfjord, T.: Convergence analysis for splitting of the abstract differential Riccati equation. SIAM J. Numer. Anal. 52, 3128–3139 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Stillfjord, T.: Low-rank second-order splitting of large-scale differential Riccati equations. IEEE Trans. Autom. Control 10, 2791–2796 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Benner, P., Ezzatti, P., Mena, H., Quintana-Ortí, E.S., Remón, A.: Solving matrix equations on multi-core and many-core architectures. Algorithms 6, 857–870 (2013)

    Article  MathSciNet  Google Scholar 

  21. Ascher, U., Petzold, L.: Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. SIAM, Philadelphia (1998)

    Book  MATH  Google Scholar 

  22. Golub, G., Loan, C.V.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  23. Lang, N., Mena, H., Saak, J.: On the benefits of the LDL factorization for large-scale differential matrix equation solvers. Linear Algebra Appl. 480, 44–71 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, J., White, J.: Low rank solution of Lyapunov equations. SIAM J. Matrix Anal. Appl. 24(1), 260–280 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Benner, P., Li, J., Penzl, T.: Numerical solution of large Lyapunov equations, Riccati equations, and linear-quadratic control problems. Numer. Linear Algebra Appl. 15, 755–777 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Penzl, T.: Numerische Lösung großer Lyapunov-Gleichungen. Ph.D. thesis, Technische Universität Chemnitz (1998)

    Google Scholar 

  27. Benner, P., Kürschner, P., Saak, J.: Efficient handling of complex shift parameters in the low-rank cholesky factor ADI method. Numer. Algorithms 62, 225–251 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Simoncini, V.: A new iterative method for solving large-scale Lyapunov matrix equations. SIAM J. Sci. Comput. 29, 1268–1288 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Benner, P., Saak, J.: Numerical solution of large and sparse continuous time algebraic matrix Riccati and Lyapunov equations: a state of the art survey. GAMM Mitt. 36, 32–52 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wachspress, E.: Iterative solution of the Lyapunov matrix equation. Appl. Math. Lett. 107, 87–90 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  31. Dufrechou, E., Ezzatti, P., Quintana-Ortí, E.S., Remón, A.: Accelerating the Lyapack library using GPUs. J. Supercomput. 65, 1114–1124 (2013)

    Article  Google Scholar 

  32. Alfaro, P., Igounet, P., Ezzatti, P.: A study on the implementation of tridiagonal systems solvers using a GPU. In: 30th International Conference of the Chilean Computer Science Society (SCCC 2011), pp. 219–227. IEEE (2011)

    Google Scholar 

  33. Naumov, M.: Incomplete-LU and Cholesky preconditioned. Iterative methods using CUSPARSE and CUBLAS. Nvidia white paper (2011)

    Google Scholar 

  34. Saak, J.: Effiziente numerische Lösung eines Optimalsteuerungsproblems für die Abkühlung von Stahlprofilen. Diplomarbeit, Fachbereich 3/Mathematik und Informatik, Universität Bremen, D-28334 Bremen (2003)

    Google Scholar 

  35. Saak, J.: RRQR-MEX a MATLAB mex-interface for the rank revealing QR factorization. https://www2.mpi-magdeburg.mpg.de/mpcsc/mitarbeiter/saak/Software/rrqr.php. Accessed 07 July 2015

  36. Choi, C., Laub, A.: Constructing Riccati differential equations with known analytic solutions for numerical experiments. IEEE Trans. Automat. Control 35, 437–439 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  37. Abels, J., Benner, P.: CAREX - a collection of benchmark examples for continuous-time algebraic Riccati equations. Technical report, SLICOT working note 1999–2014 (1999). http://www.slicot.org

  38. Davis, T.: Umfpack version 4.4 user guide. Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (2005)

    Google Scholar 

Download references

Acknowledgment

H. Mena was supported by the project Solution of large-scale Lyapunov Differential Equations (P 27926) founded by the Austrian Science Foundation FWF. E.S. Quintana was supported by the CICYT project TIN2014-53495-R of the Ministerio de Economía y Competitividad and FEDER. E. Dufrechou, P. Ezzatti and A. Remón were supported by the EHFARS project funded by the German Ministry of Education and Research BMBF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Remón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Benner, P., Dufrechou, E., Ezzatti, P., Mena, H., Quintana-Ortí, E.S., Remón, A. (2017). Solving Sparse Differential Riccati Equations on Hybrid CPU-GPU Platforms. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2017. ICCSA 2017. Lecture Notes in Computer Science(), vol 10404. Springer, Cham. https://doi.org/10.1007/978-3-319-62392-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62392-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62391-7

  • Online ISBN: 978-3-319-62392-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics