Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Uncoupling Strategy in the Newmark Method for Dynamic Problems

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2017 (ICCSA 2017)

Abstract

When the semidiscrete formulation of the finite element method (FEM) is employed in traditional elastodynamic problems, a system of ordinary differential equations (ODEs) is obtained. The present paper focuses on the development of a numerical strategy to decouple the resulting system by means of the implicit unconditionally stable Newmark method, allowing the parts to be solved independently, and through an iterative procedure, managing to preserve the stability and accuracy properties of the original method. It is observed that only one iteration is sufficient to achieve the same level of accuracy of the solution of the fully coupled system, rendering a very efficient algorithm. The accuracy and potentialities of the proposed decoupling strategy will be studied through the solution of two 2D structural dynamic problems that present materials with functionally graded properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arsha, A., Jayakumar, E., Rajan, T., Antony, V., Pai, B.: Design and fabrication of functionally graded in-situ aluminium composites for automotive pistons. Mater. Des. 88, 1201–1209 (2015)

    Article  Google Scholar 

  2. Bathe, K.: Finite Element Procedures. Prentice-Hall, Upper Saddle River (1996)

    MATH  Google Scholar 

  3. Bathe, K., Noh, G.: Insight into an implicit time integration scheme for structural dynamics. Comput. Struct. 98–99, 1–6 (2012)

    Article  Google Scholar 

  4. Belonosov, M.A., Kostov, C., Reshetova, G.V., Soloviev, S.A., Tcheverda, V.A.: Parallel numerical simulation of seismic waves propagation with Intel math kernel library. In: Manninen, P., Öster, P. (eds.) PARA 2012. LNCS, vol. 7782, pp. 153–167. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36803-5_11

    Chapter  Google Scholar 

  5. Daniel, W.: Subcycling first- and second-order generalizations of the trapezoidal rule. Int. J. Numer. Meth. Eng. 42, 1091–1119 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dongarra, J.J., Eijkhout, V.: Numerical linear algebra algorithms and software. J. Comput. Appl. Math. 123, 489–514 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fan, Z., Jia, X.: Element-free method and its efficiency improvement in seismic modelling and reverse time migration. J. Geophys. Eng. 10, 025002 (2013)

    Article  Google Scholar 

  8. Felippa, C.A., Park, K., Farhat, C.: Partitioned analysis of coupled mechanical systems. Comput. Methods Appl. Mech. Eng. 190, 3247–3270 (2001)

    Article  MATH  Google Scholar 

  9. Gao, X.W., Li, L.: A solver of linear systems of equations (REBSM) for large-scale engineering problems. Int. J. Comput. Methods 9, 1240011 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hoitink, A., Masuri, S., Zhou, X., Tamma, K.K.: Algorithms by design: Part I-on the hidden point collocation within lms methods and implications for nonlinear dynamics applications. Int. J. Comput. Methods Eng. Sci. Mech. 9, 383–407 (2008)

    Article  MATH  Google Scholar 

  11. Hughes, T.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover Publications, New York (2000)

    MATH  Google Scholar 

  12. Janna, C., Comerlati, A., Gambolati, G.: A comparison of projective and direct solvers for finite elements in elastostatics. Adv. Eng. Softw. 40, 675–685 (2009)

    Article  MATH  Google Scholar 

  13. Jardin, S., Breslau, J., Ferraro, N.: A high-order implicit finite element method for integrating the two-fluid magnetohydrodynamic equations in two dimensions. J. Comput. Phys. 226, 2146–2174 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kim, J.-H., Paulino, G.: Isoparametric graded finite elements for nonhomogeneous isotropic and orthotropic materials. J. Appl. Mech. Trans. 69, 502–514 (2002). ASME

    Article  MATH  Google Scholar 

  15. Kim, W., Park, S.-S., Reddy, J.N.: A cross weighted-residual time integration scheme for structural dynamics. Int. J. Struct. Stab. Dyn. 14, 1450023 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, X.S.: An overview of SuperLU: algorithms, implementation, and user interface. TOMS 31, 302–325 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mehrabani, M., Nobari, M., Tryggvason, G.: Accelerating poisson solvers in front tracking method using parallel direct methods. Computers & Fluids. 118, 101–113 (2015)

    Article  MathSciNet  Google Scholar 

  18. Reddy, J.N.: An Introduction to the Finite Element Method, 3rd edn. McGraw-Hill Higher Education, New York (2006)

    Google Scholar 

  19. Ross, M.R., Felippa, C.A., Park, K., Sprague, M.A.: Treatment of acoustic fluid-structure interaction by localized lagrange multipliers: formulation. Comput. Methods Appl. Mech. Eng. 197, 3057–3079 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Santare, M., Lambros, J.: Use of graded finite elements to model the behavior of nonhomogeneous materials. J. Appl. Mech. Trans. 67, 819–822 (2000). ASME

    Article  MATH  Google Scholar 

  21. Santare, M.H., Thamburaj, P., Gazonas, G.A.: The use of graded finite elements in the study of elastic wave propagation in continuously nonhomogeneous materials. Int. J. Solids Struct. 40, 5621–5634 (2003)

    Article  MATH  Google Scholar 

  22. Shimada, M., Masuri, S., Tamma, K.K.: A novel design of an isochronous integration iIntegration framework for first/second order multidisciplinary transient systems. Int. J. Numer. Meth. Eng. 102, 867–891 (2015)

    Article  MATH  Google Scholar 

  23. Smolinski, P., Belytschko, T., Neal, M.: Multi-time-step integration using nodal partitioning. Int. J. Numer. Meth. Eng. 26, 2 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  24. Soares, D., Von Estorff, O., Mansur, W.: Iterative coupling of BEM and FEM for nonlinear dynamic analyses. Comput. Mech. 34, 67–73 (2014)

    MATH  Google Scholar 

  25. Soares, D.: An optimised FEM-BEM time-domain iterative coupling algorithm for dynamic analyses. Comput. Struct. 86, 1839–1844 (2008)

    Article  Google Scholar 

  26. Soares, D.: A simple and effective new family of time marching procedures for dynamics. Comput. Methods Appl. Mech. Eng. 283, 1138–1166 (2015)

    Article  MathSciNet  Google Scholar 

  27. Soares, D., Godinho, L.: An overview of recent advances in the iterative analysis of coupled models for wave propagation. J. Appl. Math. 2014, 21 (2014)

    Article  MathSciNet  Google Scholar 

  28. Wu, Y., Smolinski, P.: A multi-time step integration algorithm for structural dynamics based on the modified trapezoidal rule. Comput. Methods Appl. Mech. Eng. 187, 641–660 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang, Z., Paulino, G.H.: Wave propagation and dynamic analysis of smoothly graded heterogeneous continua using graded finite elements. Int. J. Solid Struct. 44, 3601–3626 (2007)

    Article  MATH  Google Scholar 

  30. Zhang, Z., Yang, Z., Liu, G.: An adaptive time-stepping procedure based on the scaled boundary finite element method for elastodynamics. Int. J. Comput. Methods 9, 1 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The financial support of CNPQ, FAPEMIG, UFSJ and UFJF is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelli Marlane Silva Loureiro .

Editor information

Editors and Affiliations

Appendix: Coupling Parameter

Appendix: Coupling Parameter

This appendix presents the necessary assumptions to obtain the expressions employed in Sect. 4. Thus, supposing a regular uniform mesh (leading to \( N_{i,1}=N_{i,2} \)) and same nodal displacement constraints in each direction (leading to \(nq_1=nq_2\)) with material properties governed by functions in the spatial domain, as well as FGM models, and recalling that

$$\begin{aligned} c_{1}=\lambda +2\mu = \frac{E(1-\nu )}{(1+\nu )(1-2\nu )},\;\; c_{2}=\lambda =\nu c_{1},\;\; c_{3}=\mu =c_{1}\frac{(1-2\nu )}{2(1-\nu )} \end{aligned}$$
(23)

from (13) and (15) we have

$$\begin{aligned} K^{11}_{ij}=\int _{\varOmega }hN_{i,1}N_{j,1}(c_{1}+c_{3})dxdy; K^{22}_{ij}=\int _{\varOmega }hN_{i,1}N_{j,1}(c_{3}+c_{1})dxdy=K^{11}_{ij} \end{aligned}$$
(24)

Furthermore, (14) can be rewritten (after proper use of the Integral Mean Value Theorem) as follows:

$$\begin{aligned} K^{12}_{ij}=K^{21}_{ji}=&\int _{\varOmega }h(\nu c_{1}N_{i,1}N_{j,2}+c_{3}N_{i,2}N_{j,1})dxdy\end{aligned}$$
(25)
$$\begin{aligned} =&\int _{\varOmega }hN_{i,1}N_{j,1}(\nu c_{1}+c_{3})dxdy\end{aligned}$$
(26)
$$\begin{aligned} =&\int _{\varOmega }hN_{i,1}N_{j,1}(\nu c_{1}+c_{3})\frac{(c_{1}+c_{3})}{(c_{1}+c_{3})}dxdy\end{aligned}$$
(27)
$$\begin{aligned} =&\sum \limits _e \left. \frac{( vc_1 + c_3 )}{( c_1 + c_3 )}\right| _{\mathbf {\xi } \in \varOmega _e}\int _{\varOmega _e} hN_{i,1}N_{j,1}( c_1 + c_3 )dxdy \end{aligned}$$
(28)
$$\begin{aligned} =&\sum \limits _e \alpha _e\int _{\varOmega _e} hN_{i,1}N_{j,1}( c_1 + c_3 )dxdy \end{aligned}$$
(29)

where \( \alpha _e=\frac{(\nu c_{1}+c_{3})}{(c_{1}+c_{3})}=\frac{1-2\nu ^{2}}{3-4\nu } \) plays a role of a parameter which varies as a function of the Poisson’s ratio with \( \nu \in [0,0.5]\) in common cases. Since we are interested in the variation of such a parameter over the whole range, one can assume \(K^{12}_{ij}=K^{21}_{ji}=\alpha K^{11}_{ij}\).

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Silva, J.E.A., Loureiro, M.M.S., Mansur, W.J., dos Santos Loureiro, F. (2017). An Uncoupling Strategy in the Newmark Method for Dynamic Problems. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2017. ICCSA 2017. Lecture Notes in Computer Science(), vol 10405. Springer, Cham. https://doi.org/10.1007/978-3-319-62395-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62395-5_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62394-8

  • Online ISBN: 978-3-319-62395-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics