Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

MOOC Learner Behaviour: Attrition and Retention Analysis and Prediction Based on 11 Courses on the TELESCOPE Platform

  • Conference paper
  • First Online:
Learning Technology for Education Challenges (LTEC 2017)

Abstract

Massive Open Online Courses (MOOCs) have become an important online learning tool for educators and learners, but one of the major issues are the high drop-out rates. Recent research suggests not only to identify and support learners at-risk to drop-out but also to differentiate between the group of healthy attrition (intentionally leaving the MOOC) and unhealthy attrition (struggling to complete the MOOC). In this paper, we focus on two research questions: Firstly, can we already identify learners at-risk to drop-out a MOOC in an early stage? Secondly, can we differentiate between the group of healthy attrition and unhealthy attrition? Experimentation with Support Vector Machines based on learners logs from eleven MOOCs on the Telescope platform show first promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Berge, Z.L., Huang, Y.-P.: A model for sustainable student retention: a holistic perspective on the student dropout problem with special attention to e-learning. Deosnews 13(5), 26 (2004)

    Google Scholar 

  2. Angelino, L.M., Williams, F.K., Natvig, D.: Strategies to engage online students and reduce attrition rates. J. Educ. Online 4(2), 1–14 (2007)

    Google Scholar 

  3. Gütl, C., Rizzardini, R.H., Chang, V., Morales M.: Attrition in MOOC: lessons learned from drop-out students. In: Uden, L., Sinclair, J., Tao, Y.H., Liberona, D. (eds.) Learning Technology for Education in Cloud. MOOC and Big Data. LTEC 2014. Communications in Computer and Information Science, vol. 446, pp. 37–48. Springer, Cham (2014)

    Google Scholar 

  4. Hernández, R., Morales, M. Gütl, C.: An attrition model for MOOCs. In: Formative Assessment, Learning Data Analytics and Gamification, pp. 295–311 (2016)

    Google Scholar 

  5. Xing, W., Chen, X., Stein, J., Marcinkowski, M.: Temporal predication of dropouts in MOOCs: reaching the low hanging fruit through stacking generalization. Comput. Hum. Behav. 58, 119–129 (2016)

    Article  Google Scholar 

  6. Li, W., Gao, M., Li, H., Xiong, Q., Wen, J., Wu, Z.: Dropout prediction in MOOCs using behavior features and multi-view semi-supervised learning. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 3130–3137. IEEE (2016)

    Google Scholar 

  7. Yang, D., Sinha, T., Adamson, D., Rosé, C.P.: Turn on, tune in, drop out: anticipating student dropouts in massive open online courses. In: Proceedings of the 2013 NIPS Data-Driven Education Workshop, vol. 11, p. 14 (2013)

    Google Scholar 

  8. Lubis, F.F., Rosmansyah, Y., Supangkat, S.H.: Experience in learners review to determine attribute relation for course completion. In: 2016 International Conference on ICT For Smart Society (ICISS), pp. 32–36. IEEE (2016)

    Google Scholar 

  9. Pirker, J., Riffnaller-Schiefer, M., Tomes, L.M., Gütl, C.: Motivational active learning in blended and virtual learning scenarios: engaging students in digital learning. In: Handbook of Research on Engaging Digital Natives in Higher Education Settings, p. 416 (2016)

    Google Scholar 

  10. Hernández, R., Guetl, C., Amado-Salvatierra, H.R.: Facebook for e-moderation: a Latin-American experience. In: Proceedings of the 11th International Conference on Knowledge Management and Knowledge Technologies, p. 37. ACM (2011)

    Google Scholar 

  11. Zhang, Q., Peck, K.L., Hristova, A., Jablokow, K.W., Hoffman, V., Park, E., Bayeck, R.Y.: Exploring the communication preferences of MOOC learners and the value of preference-based groups: is grouping enough? Educ. Technol. Res. Dev. 64(4), 809–837 (2016)

    Article  Google Scholar 

  12. Rizzardini, R.H., Gütl, C., Chang, V., Morales, M.: MOOC in Latin America: implementation and lessons learned. In: Uden, L., Tao, Y.H., Yang, H.C., Ting, I.H. (eds.) The 2nd International Workshop on Learning Technology for Education in Cloud. Springer Proceedings in Complexity, pp. 147–158. Springer, Dordrecht (2014)

    Google Scholar 

  13. Suykens, J.A., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)

    Article  MATH  Google Scholar 

  14. Joachims, T.: Text categorization with support vector machines: learning with many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 137–142. Springer, Heidelberg (1998). doi:10.1007/BFb0026683

    Chapter  Google Scholar 

  15. Vitiello, M., et al.: Classifying students to improve MOOC dropout rates. In: EMOOCs 2016 Conference, Research Track, S. 501 (2016)

    Google Scholar 

  16. Sammut, C., Webb, G.I.: Encyclopedia of Machine Learning, p. 1335. Springer, Heidelberg (2011)

    MATH  Google Scholar 

  17. Guetl, C., et al.: Must we be concerned with the massive drop-outs in MOOC? An attrition analysis of open courses. In: Proceedings of the International Conference Interactive Collaborative Learning (ICL 2014) (2014)

    Google Scholar 

  18. MOOC Maker. Official Website (2017). http://www.mooc-maker.org/. Accessed 7 May 2017

  19. MOOC Maker. Attrition and Retention Aspects in MOOC Environments. Version 5. Deliverable 1.6 (2017b). http://www.mooc-maker.org/wp-content/files/WPD1.6_INGLES.pdf. Accessed 7 May 2017

  20. Amado-Salvatierra, H.R., Hilera, J.R., Tortosa, S.O., Rizzardini, R.H., Piedra, N.: Towards a semantic definition of a framework to implement accessible e-learning projects. J. Univ. Comput. Sci. 22(7), 921–942 (2016)

    Google Scholar 

  21. Martín, J.L., Amado-Salvatierra, H.R., Hilera, J.R.: MOOCs for all: evaluating the accessibility of top MOOC platforms. Int. J. Eng. Educ. 32, 5(B), 2374–2383 (2016)

    Google Scholar 

  22. Tong, S., Koller, D.: Support vector machine active learning with applications to text classification. J. Mach. Learn. Res. 2, 45–66 (2001)

    MATH  Google Scholar 

  23. Furey, T.S., et al.: Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16(10), 906–914 (2000)

    Article  Google Scholar 

Download references

Acknowledgment

This work is partially supported by European Union through the project MOOC-Maker www.moocmaker.org. Reference: 561533-EPP-1-2015-1-ES-EPPKA2-CBHE-JP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hector R. Amado-Salvatierra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Vitiello, M., Gütl, C., Amado-Salvatierra, H.R., Hernández, R. (2017). MOOC Learner Behaviour: Attrition and Retention Analysis and Prediction Based on 11 Courses on the TELESCOPE Platform. In: Uden, L., Liberona, D., Liu, Y. (eds) Learning Technology for Education Challenges. LTEC 2017. Communications in Computer and Information Science, vol 734. Springer, Cham. https://doi.org/10.1007/978-3-319-62743-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62743-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62742-7

  • Online ISBN: 978-3-319-62743-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics