Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Properties of the Conservative Parallel Discrete Event Simulation Algorithm

  • Conference paper
  • First Online:
Parallel Computing Technologies (PaCT 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10421))

Included in the following conference series:

Abstract

We address question of synchronisation in parallel discrete event simulation (PDES) algorithms. We study synchronisation in conservative PDES model adding long-range connections between processing elements. We investigate how fraction of the random long-range connections in the synchronisation scheme influences the simulation time profile of PDES. We found that small fraction of random distant connections enhance synchronisation, namely, the width of the local virtual times remains constant with increasing number of processing elements. At the same time the conservative algorithm of PDES on small-world networks remains free from deadlocks. We compare our results with the case-study simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bailey, D.H., David, H., Dongarra, J., Gao, G., Hoisie, A., Hollingsworth, J., Jefferson, D., Kamath, C., Malony, A., Quinian, D.: Performance Technologies for Peta-Scale Systems: A White Paper Prepared by the Performance Evaluation Research Center and Collaborators. White paper, Lawrence Berkeley National Laboratories (2003)

    Google Scholar 

  2. Fujimoto, R.M.: Parallel discrete event simulation. Commun. ACM 33, 30–53 (1990). doi:10.1145/84537.84545

    Article  Google Scholar 

  3. Jefferson, D.R.: Virtual time. ACM Trans. Program. Lang. Syst. 7, 404–425 (1985). doi:10.1145/3916.3988

    Article  Google Scholar 

  4. Shchur, L.N., Novotny, M.A.: Evolution of time horizons in parallel and grid simulations. Phys. Rev. E 70, 026703 (2004). doi:10.1103/PhysRevE.70.026703

    Article  Google Scholar 

  5. Korniss, G., Toroczkai, Z., Novotny, M.A., Rikvold, P.A.: From massively parallel algorithms and fluctuating time horizons to nonequilibrium surface growth. Phys. Rev. Lett. 84, 1351 (2000). doi:10.1103/PhysRevLett.84.1351

    Article  Google Scholar 

  6. Kardar, M., Parisi, G., Zhang, Y.C.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889 (1986). doi:10.1103/PhysRevLett.56.889

    Article  MATH  Google Scholar 

  7. Shchur, L.N., Shchur, L.V.: Relation of parallel discrete event simulation algorithms with physical models. J. Phys: Conf. Ser. 640, 012065 (2015). doi:10.1088/1742-6596/640/1/012065

    MATH  Google Scholar 

  8. Shchur, L., Shchur, L.: Parallel discrete event simulation as a paradigm for large scale modeling experiments. Selected Papers of the XVII International Conference on Data Analytics and Management in Data Intensive Domains (DAMDID/RCDL 2015), Obninsk, Russia, 13–16 October 2015, pp. 107–113, (2015). http://ceur-ws.org/Vol-1536/

  9. Ziganurova, L., Novotny, M.A., Shchur, L.N.: Model for the evolution of the time profile in optimistic parallel discrete event simulations. J. Phys. Conf. Ser. 681, 012047 (2016). doi:10.1088/1742-6596/681/1/012047

    Article  Google Scholar 

  10. Alon, U., Evans, M.R., Hinrichsen, H., Mukamel, D.: Roughening transition in a one-dimensional growth process. Phys. Rev. Lett. 76, 2746 (1996). doi:10.1103/PhysRevLett.76.2746

    Article  Google Scholar 

  11. Guclu, H., Korniss, G., Novotny, M.A., Toroczkai, Z., Racz, Z.: Synchronization landscapes in small-world-connected computer networks. Phys. Rev. E 73, 066115 (2006). doi:10.1103/PhysRevE.73.066115

    Article  Google Scholar 

  12. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393, 440–442 (1998). doi:10.1038/30918

    Article  MATH  Google Scholar 

  13. Wilsey, P.A.: Some properties of events executed in discrete-event simulation models. In: Proceedings of the 2016 annual ACM Conference on SIGSIM Principles of Advanced Discrete Simulation, pp. 165–176. ACM, New York (2016). doi:10.1145/2901378.2901400

  14. Guskova, M.S., Barash, L.Y., Shchur, L.N.: RNGAVXLIB: Program library for random number generation: AVX realization. Comput. Phys. Commun. 200, 402–405 (2016). doi:10.1016/j.cpc.2015.11.001

    Article  MATH  Google Scholar 

  15. MVAPICH: MPI over InfiniBand, Omni-Path, Ethernet/iWARP, and RoCE. http://mvapich.cse.ohio-state.edu

  16. Carothers, C.D., Bauer, D., Pearce, S.: ROSS: A high-performance, low-memory, modular Time Warp system. J. Parallel Distrib. Comput. 62, 1648–1669 (2002). doi:10.1016/S0743-7315(02)00004-7

    Article  MATH  Google Scholar 

  17. Weber, D.: Time warp simulation on multi-core processors and clusters. Master’s thesis, University of Cincinnati, Cincinnati, OH (2016)

    Google Scholar 

Download references

Acknowledgements

This work is supported by grant 14-21-00158 of the Russian Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliia Ziganurova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ziganurova, L., Shchur, L. (2017). Properties of the Conservative Parallel Discrete Event Simulation Algorithm. In: Malyshkin, V. (eds) Parallel Computing Technologies. PaCT 2017. Lecture Notes in Computer Science(), vol 10421. Springer, Cham. https://doi.org/10.1007/978-3-319-62932-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62932-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62931-5

  • Online ISBN: 978-3-319-62932-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics