Abstract
We present a computational comparison of collocated and staggered uniform grids for particle-in-cell plasma simulation. Both types of grids are widely used, and numerical properties of the corresponding solvers are well-studied. However, for large-scale simulations performance is also an important factor, which is the focus of this paper. We start with a baseline implementation, apply widely-used techniques for performance optimization and measure their efficacy for both grids on a high-end Xeon CPU and a second-generation Xeon Phi processor. For the optimized version the collocated grid outperforms the staggered one by about 1.5 x on both Xeon and Xeon Phi. The speedup on the Xeon Phi processor compared to Xeon is about 1.9 x.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Fonseca, R.A., Vieira, J., Fiuza, F., Davidson, A., Tsung, F.S., Mori, W.B., Silva, L.O.: Exploiting multi-scale parallelism for large scale numerical modelling of laser wakefield accelerators. Plasma Phys. Control. Fusion. 55(12), 124011 (2013)
Bowers, K.J., Albright, B.J., Yin, L., Bergen, B., Kwan, T.J.T.: Ultrahigh performance three-dimensional electromagnetic relativistic kinetic plasma simulation. Phys. Plasmas 15(5), 055703 (2008)
Vay, J.-L., Bruhwiler, D.L., Geddes, C.G.R., Fawley, W.M., Martins, S.F., Cary, J.R., Cormier-Michel, E., Cowan, B., Fonseca, R.A., Furman, M.A., Lu, W., Mori, W.B., Silva, L.O.: Simulating relativistic beam and plasma systems using an optimal boosted frame. J. Phys. Conf. Ser. 180(1), 012006 (2009)
Kraeva, M.A., Malyshkin, V.E.: Assembly technology for parallel realization of numerical models on MIMD-multicomputers. Future Gener. Comp. Syst. 17, 755–765 (2001)
Bastrakov, S., Donchenko, R., Gonoskov, A., Efimenko, E., Malyshev, A., Meyerov, I., Surmin, I.: Particle-in-cell plasma simulation on heterogeneous cluster systems. J. Comput. Sci. 3, 474–479 (2012)
Burau, H., Widera, R., Honig, W., Juckeland, G., Debus, A., Kluge, T., Schramm, U., Cowan, T.E., Sauerbrey, R., Bussmann, M.: PIConGPU: a fully relativistic particle-in-cell code for a GPU cluster. IEEE Trans. Plasma Sci. 38(10), 2831–2839 (2010)
Decyk, V.K., Singh, T.V.: Particle-in-cell algorithms for emerging computer architectures. Comput. Phys. Commun. 185(3), 708–719 (2014)
Nakashima, H.: Manycore challenge in particle-in-cell simulation: how to exploit 1 TFlops peak performance for simulation codes with irregular computation. Comput. Electr. Eng. 46, 81–94 (2015)
Surmin, I.A., Bastrakov, S.I., Efimenko, E.S., Gonoskov, A.A., Korzhimanov, A.V., Meyerov, I.B.: Particle-in-Cell laser-plasma simulation on Xeon Phi coprocessors. Comput. Phys. Commun. 202, 204–210 (2016)
Surmin, I., Bastrakov, S., Matveev, Z., Efimenko, E., Gonoskov, A., Meyerov, I.: Co-design of a Particle-in-Cell plasma simulation code for Intel Xeon Phi: a first look at knights landing. In: Carretero, J., et al. (eds.) ICA3PP 2016. LNCS, vol. 10049, pp. 319–329. Springer, Cham (2016). doi:10.1007/978-3-319-49956-7_25
Vincenti, H., Lehe, R., Sasanka, R., Vay, J.-L.: An efficient and portable SIMD algorithm for charge/current deposition in Particle-In-Cell codes. Comput. Phys. Commun. 210, 145–154 (2017)
Godfrey, B.B., Vay, J.-L., Haber, I.: Numerical stability analysis of the pseudo-spectral analytical time-domain PIC algorithm. J. Comput. Phys. 258, 689–704 (2014)
Vincenti, H., Vay, J.-L.: Detailed analysis of the effects of stencil spatial variations with arbitrary high-order finite-difference Maxwell solver. Comput. Phys. Commun. 200, 147–167 (2016)
Yee, K.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14(3), 302–307 (1966)
Taflove, A.: Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House, London (1995)
Haber, I., Lee, R., Klein, H., Boris, J.: Advances in electromagnetic simulation techniques. In: Proceedings of the Sixth Conference on Numerical Simulation of Plasmas, pp. 46–48 (1973)
Liu, Q.: The Pstd algorithm: a time-domain method requiring only two cells per wavelength. Microw. Opt. Technol. Lett. 15(3), 158–165 (1997)
Hockney, R.W., Eastwood, J.W.: Computer Simulation Using Particles. McGraw-Hill, New York (1981)
Birdsal, C., Langdon, A.: Plasma Physics via Computer Simulation. Taylor & Francis Group, New York (2005)
Gonoskov, A., Bastrakov, S., Efimenko, E., Ilderton, A., Marklund, M., Meyerov, I., Muraviev, A., Sergeev, A., Surmin, I., Wallin, E.: Extended Particle-in-Cell schemes for physics in ultrastrong laser fields: review and developments. Phys. Rev. E 92, 023305 (2015)
Acknowledgements
The authors (E.E., A.G.) acknowledge the support from the Russian Science Foundation project No. 16-12-10486. The authors are grateful to Intel Corporation for access to the system used for performing computational experiments presented in this paper. We are also grateful to A. Bobyr, S. Egorov, I. Lopatin, and Z. Matveev from Intel Corporation for technical consultations.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Bastrakov, S., Surmin, I., Efimenko, E., Gonoskov, A., Meyerov, I. (2017). Performance Aspects of Collocated and Staggered Grids for Particle-in-Cell Plasma Simulation. In: Malyshkin, V. (eds) Parallel Computing Technologies. PaCT 2017. Lecture Notes in Computer Science(), vol 10421. Springer, Cham. https://doi.org/10.1007/978-3-319-62932-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-62932-2_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-62931-5
Online ISBN: 978-3-319-62932-2
eBook Packages: Computer ScienceComputer Science (R0)