Abstract
Fuzzy logic programming is a growing declarative paradigm aiming to integrate fuzzy logic into logic programming. One of the most difficult tasks when specifying a fuzzy logic program is determining the right weights for each rule, as well as the most appropriate fuzzy connectives and operators. In this paper, we introduce a symbolic extension of fuzzy logic programs in which some of these parameters can be left unknown, so that the user can easily see the impact of their possible values. Furthermore, given a number of test cases, the most appropriate values for these parameters can be automatically computed. Finally, we show some benchmarks that illustrate the usefulness of our approach.
This work has been partially supported by the EU (FEDER), the State Research Agency (AEI) and the Spanish Ministerio de Economía y Competitividad under grants TIN2013-45732-C4-2-P, TIN2013-44742-C4-1-R, TIN2016-76843-C4-1-R, TIN2016-76843-C4-2-R (AEI/FEDER, UE) and by the Generalitat Valenciana under grant PROMETEO-II/2015/013 (SmartLogic).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
For instance, we have typically several adjoint pairs: Łukasiewicz logic \( \langle \& _\mathtt {L},{\leftarrow }_\mathtt {L} \rangle \), Gödel logic \( \langle \& _\mathtt {G},{\leftarrow }_\mathtt {G} \rangle \) and product logic \( \langle \& _\mathtt {P},{\leftarrow }_\mathtt {P} \rangle \), which might be used for modeling pessimist, optimist and realistic scenarios, respectively.
- 2.
A complete lattice is a (partially) ordered set \(\langle L,\preceq \rangle \) such that every subset S of L has infimum and supremum elements. It is bounded if it has bottom and top elements, denoted by \(\bot \) and \(\top \), respectively. L is said to be the carrier set of the lattice, and \(\preceq \) its ordering relation.
- 3.
For convenience, in the following sections, we do not distinguish between the connective \(\varsigma \) and its truth function \([\![ \varsigma ]\!]\).
- 4.
Here, we assume that A in \(\mathcal {Q}[A]\) is the selected atom. Furthermore, as it is common practice, mgu(E) denotes the most general unifier of the set of equations E [14].
- 5.
For simplicity, we consider that facts (H with v) are seen as rules of the form \((H{\leftarrow }_i \top ~with~v)\) for some implication \({\leftarrow }_i\). Furthermore, in this case, we directly derive the state \(\langle (\mathcal {Q}[A/v])\theta ;\sigma \theta \rangle \) since \( v\, \& _i \top = v\) for all &\(_i\).
- 6.
It is important to note that, at execution time, each implication symbol belonging to a concrete adjoint pair is replaced by its adjoint conjunction (see again our repertoire of adjoint pairs in Fig. 1 in the preliminaries section).
- 7.
Each cell refers to the average of 100 executions using a desktop computer equipped with an i3-2310 M CPU @ 2.10 GHz and 4,00 GB RAM.
- 8.
Instead of focusing on satisfiability, (i.e., proving the existence of at least one model) as usually done in a SAT/SMT setting, in [1, 6] we have faced the problem of finding the whole set of models for a given fuzzy formula by re-using a previous method based on fuzzy logic programming where the formula is conceived as a goal whose derivation tree, provided by the FLOPER tool, contains in its leaves all the models of the original formula, together with other interpretations.
References
Almendros-Jiménez, J.M., Bofill, M., Luna-Tedesqui, A., Moreno, G., Vázquez, C., Villaret, M.: Fuzzy XPath for the automatic search of fuzzy formulae models. In: Beierle, C., Dekhtyar, A. (eds.) SUM 2015. LNCS (LNAI), vol. 9310, pp. 385–398. Springer, Cham (2015). doi:10.1007/978-3-319-23540-0_26
Almendros-Jiménez, J.M., Luna, A., Moreno, G.: Fuzzy XPath through fuzzy logic programming. New Gener. Comput. 33(2), 173–209 (2015)
Ansótegui, C., Bofill, M., Manyà, F., Villaret, M.: Building automated theorem provers for infinitely-valued logics with satisfiability modulo theory solvers. In: Proceeding of ISMVL 2012, pp. 25–30 (2012)
Baldwin, J.F., Martin, T.P., Pilsworth, B.W.: Fril- Fuzzy and Evidential Reasoning in Artificial Intelligence. Wiley, New York (1995)
Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In: Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, 185, pp. 825–885. IOS Press (2009)
Bofill, M., Moreno, G., Vázquez, C., Villaret, M.: Automatic proving of fuzzy formulae with fuzzy logic programming and SMT. In: Fredlund, L.A. (ed.) Programming and Computer Languages 2013, vol. 64, p. 19. ECEASST (2013)
Ishizuka, M., Kanai, N.: Prolog-ELF incorporating fuzzy logic. In: Proceeding of the IJCAI 1985, pp. 701–703. Morgan Kaufmann (1985)
Julián, P., Medina, J., Moreno, G., Ojeda-Aciego, M.: Efficient thresholded tabulation for fuzzy query answering. In: Bouchon-Meunier, B., Magdalena, L., Ojeda-Aciego, M., Verdegay, J.L., Yager, R.R. (eds.) Foundations of Reasoning under Uncertainty. STUDFUZZ, vol. 249, pp. 125–149. Springer, Heidelberg (2010)
Julián, P., Moreno, G., Penabad, J.: Operational/interpretive unfolding of multi-adjoint logic programs. J. Univ. Comput. Sci. 12(11), 1679–1699 (2006)
Julián, P., Moreno, G., Penabad, J.: An improved reductant calculus using fuzzy partial evaluation techniques. Fuzzy Sets Syst. 160, 162–181 (2009). http://dx.doi.org/10.1016/j.fss.2008.05.006
Julián-Iranzo, P., Moreno, G., Penabad, J., Vázquez, C.: A fuzzy logic programming environment for managing similarity and truth degrees. In: EPTCS, vol. 173, pp. 71–86 (2015). http://dx.doi.org/10.4204/EPTCS.173.6
Julián-Iranzo, P., Moreno, G., Penabad, J., Vázquez, C.: A declarative semantics for a fuzzy logic language managing similarities and truth degrees. In: Alferes, J.J.J., Bertossi, L., Governatori, G., Fodor, P., Roman, D. (eds.) RuleML 2016. LNCS, vol. 9718, pp. 68–82. Springer, Cham (2016). doi:10.1007/978-3-319-42019-6_5
Kifer, M., Subrahmanian, V.S.: Theory of generalized annotated logic programming and its applications. J. Logic Program. 12, 335–367 (1992)
Lassez, J.L., Maher, M.J., Marriott, K.: Unification revisited. In: Foundations of Deductive Databases and Logic Programming, pp. 587–625. Morgan Kaufmann, Los Altos, CA (1988)
Lee, R.: Fuzzy logic and the resolution principle. J. ACM 19(1), 119–129 (1972)
Li, D., Liu, D.: A Fuzzy Prolog Database System. Wiley, New York (1990)
Lloyd, J.W.: Foundations of Logic Programming. Springer-Verlag, Berlin (1987)
Medina, J., Ojeda-Aciego, M., Vojtáš, P.: Similarity-based Unification: a multi-adjoint approach. Fuzzy Sets Syst. 146, 43–62 (2004)
Morcillo, P.J., Moreno, G., Penabad, J., Vázquez, C.: A practical management of fuzzy truth-degrees using FLOPER. In: Dean, M., Hall, J., Rotolo, A., Tabet, S. (eds.) RuleML 2010. LNCS, vol. 6403, pp. 20–34. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16289-3_4
Moreno, G., Vázquez, C.: Fuzzy logic programming in action with FLOPER. J. Softw. Eng. Appl. 7, 237–298 (2014)
Nguyen, H.T., Walker, E.A.: A First Course in Fuzzy Logic. Chapman & Hall, Boca Ratón (2006)
Rodríguez-Artalejo, M., Romero-Díaz, C.A.: Quantitative logic programming revisited. In: Garrigue, J., Hermenegildo, M.V. (eds.) FLOPS 2008. LNCS, vol. 4989, pp. 272–288. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78969-7_20
Straccia, U.: Managing uncertainty and vagueness in description logics, logic programs and description logic programs. In: Baroglio, C., Bonatti, P.A., Małuszyński, J., Marchiori, M., Polleres, A., Schaffert, S. (eds.) Reasoning Web. LNCS, vol. 5224, pp. 54–103. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85658-0_2
Vidal, A., Bou, F., Godo, L.: An SMT-based solver for continuous t-norm based logics. In: Hüllermeier, E., Link, S., Fober, T., Seeger, B. (eds.) SUM 2012. LNCS (LNAI), vol. 7520, pp. 633–640. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33362-0_53
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Moreno, G., Penabad, J., Riaza, J.A., Vidal, G. (2017). Symbolic Execution and Thresholding for Efficiently Tuning Fuzzy Logic Programs. In: Hermenegildo, M., Lopez-Garcia, P. (eds) Logic-Based Program Synthesis and Transformation. LOPSTR 2016. Lecture Notes in Computer Science(), vol 10184. Springer, Cham. https://doi.org/10.1007/978-3-319-63139-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-63139-4_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-63138-7
Online ISBN: 978-3-319-63139-4
eBook Packages: Computer ScienceComputer Science (R0)