Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Hybrid Global Crossover Bees Algorithm for Solving Boolean Function Classification Task

  • Conference paper
  • First Online:
Intelligent Computing Methodologies (ICIC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10363))

Included in the following conference series:

Abstract

Using typical algorithms for training multilayer perceptron (MLP) creates some difficulties like slow convergence speed and local minima trapping in the solution space. Bio-inspired learning algorithms are famous for solving linear and nonlinear combinatorial problems. Artificial Bee Colony (ABC) algorithm is one among the famous bio-inspired algorithms. However, due to slow exploration process, it has been focused by researchers for further enhancement in optimization area. Therefore, this paper proposed a new hybrid swarm based learning algorithm called Global Crossover Artificial Bee Colony (GCABC) algorithm for training MLP for solving boolean classification problems. The simulation results of proposed GCABC algorithm compared with standard bio-inspired algorithms such as ABC, and Global Artificial Bee Colony (GABC) show that the proposed algorithm is achievable and efficient results in benchmark boolean function classification, with fast convergence speed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rosenblatt, F.: The perception: a probabilistic model for information storage and organization in the brain. In: James, A.A., Edward, R. (eds.) Neurocomputing: Foundations of Research, pp. 89–114. MIT Press, Cambridge (1988)

    Google Scholar 

  2. Du, K.L.: Clustering: a neural network approach. Neural Netw. 23(1), 89–107 (2010)

    Article  Google Scholar 

  3. Karaboga, D.: An idea based on honey bee swarm for numerical optimization, pp. 1–10. Technical report TR06, Erciyes University, Engineering Faculty, Computer Engineering DepartmenTR06 (2005)

    Google Scholar 

  4. Suganthan, P.N.: Differential evolution algorithm: recent advances. In: Dediu, A.-H., Martín-Vide, C., Truthe, B. (eds.) TPNC 2012. LNCS, vol. 7505, pp. 30–46. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33860-1_4

    Chapter  Google Scholar 

  5. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceeding of IEEE International Conference on Neural Network 4, Australia, pp. 1942–1948 (1995)

    Google Scholar 

  6. Tairan, N.: Cooperative guided local search. Ph.D., University of Essex, UK, 573069 (2012)

    Google Scholar 

  7. Otair, M.A., Salameh, W.A.: Speeding up back-propagation neural networks. In: Proceeding of the 2005 Informing Science and IT Education Joint Conference, Flagstaff, Arizona, USA, pp. 167–173 (2005)

    Google Scholar 

  8. Nawi, N.M., Ransing, M.R., Ransing, R.S.: An improved learning algorithm based on the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method for back propagation neural networks. In: Sixth International Conference on Intelligent Systems Design and Applications, ISDA 2006, vol. 1, pp. 152–157 (2006)

    Google Scholar 

  9. Alarifi, A.S.N., Alarifi, N.S.N., Al-Humidan, S.: Earthquakes magnitude predication using artificial neural network in northern Red Sea area. J. King Saud Univ. - Sci. 24(4), 301–313 (2012)

    Article  Google Scholar 

  10. Cai, X., Gao, X.-Z., Xue, Y.: Improved bat algorithm with optimal forage strategy and random disturbance strategy. Int. J. Bio-Inspired Comput. 8(4), 205–214 (2016)

    Article  Google Scholar 

  11. Karaboga, D., Akay, B., Ozturk, C.: Artificial bee colony (ABC) optimization algorithm for training feed-forward neural networks. In: Torra, V., Narukawa, Y., Yoshida, Y. (eds.) MDAI 2007. LNCS, vol. 4617, pp. 318–329. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73729-2_30

    Chapter  Google Scholar 

  12. Bullinaria, J.A., AlYahya, K.: Artificial bee colony training of neural networks. In: Terrazas, G., Otero, F.E.B., Masegosa, A.D. (eds.) Nature Inspired Cooperative Strategies for Optimization (NICSO 2013): Learning, Optimization and Interdisciplinary Applications, pp. 191–201. Springer, Cham (2014)

    Chapter  Google Scholar 

  13. Olariu, S., Zomaya, A.Y.: Handbook of Bioinspired Algorithms and Applications. Chapman and Hall/CRC, Boca Raton (2005)

    Book  MATH  Google Scholar 

  14. Guo, P., Cheng, W., Liang, J.: Global artificial bee colony search algorithm for numerical function optimization. In: 2011 Seventh International Conference on Natural Computation (ICNC), vol. 3, pp. 1280–1283 (2011)

    Google Scholar 

  15. Chambers, L.D.: Practical Handbook of Genetic Algorithms: New Frontiers, p. 448. CRC Press Inc., Boca Raton (1995)

    Book  MATH  Google Scholar 

  16. Karaboga, D., Gorkemli, B., Ozturk, C., Karaboga, N.: A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artif. Intell. Rev. 42(1), 21–57 (2014)

    Article  Google Scholar 

  17. Haupt, R.L., Haupt, S.E.: Introduction to optimization. In: Practical Genetic Algorithms, pp. 1–25. Wiley (2004)

    Google Scholar 

  18. Jalali Varnamkhasti, M., Lee, L.S., Abu Bakar, M.R., Leong, W.J.: A genetic algorithm with fuzzy crossover operator and probability. Adv. Oper. Res. 2012, 16 (2012). Article no. 956498

    MathSciNet  MATH  Google Scholar 

  19. Zhang, T., Hu, T., Guo, X., Chen, Z., Zheng, Y.: Solving high dimensional bilevel multiobjective programming problem using a hybrid particle swarm optimization algorithm with crossover operator. Knowl.-Based Syst. 53, 13–19 (2013)

    Article  Google Scholar 

  20. Ma, L., Hu, K., Zhu, Y., Chen, H.: A hybrid artificial bee colony optimizer by combining with life-cycle, Powell’s search and crossover. Appl. Math. Comput. 252, 133–154 (2015)

    MATH  Google Scholar 

  21. Zhu, G., Kwong, S.: Gbest-guided artificial bee colony algorithm for numerical function optimization. Appl. Math. Comput. 217(7), 3166–3173 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Toh, K.-A., Lu, J., Yau, W.-Y.: Global feedforward neural network learning for classification and regression. In: Figueiredo, M., Zerubia, J., Jain, Anil K. (eds.) EMMCVPR 2001. LNCS, vol. 2134, pp. 407–422. Springer, Heidelberg (2001). doi:10.1007/3-540-44745-8_27

    Chapter  Google Scholar 

  23. Aijun, L., Yun-Hui, L., Si-Wei, L.: On the solution of the XOR problem using the decision tree-based neural network. In: 2003 International Conference on Machine Learning and Cybernetics, vol. 2, pp. 1048–1052 (2003)

    Google Scholar 

  24. Minsky, M., Papert, S.A.: Perceptrons: An Introduction to Computational Geometry. MIT Press, Cambridge (1969)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habib Shah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Shah, H., Tairan, N., Mashwani, W.K., Al-Sewari, A.A., Jan, M.A., Badshah, G. (2017). Hybrid Global Crossover Bees Algorithm for Solving Boolean Function Classification Task. In: Huang, DS., Hussain, A., Han, K., Gromiha, M. (eds) Intelligent Computing Methodologies. ICIC 2017. Lecture Notes in Computer Science(), vol 10363. Springer, Cham. https://doi.org/10.1007/978-3-319-63315-2_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63315-2_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63314-5

  • Online ISBN: 978-3-319-63315-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics