Abstract
The BoF (bag-of-features) model is one of the most famous models applied to many fields in computer vision and has achieved impressive results. However, the SIFT/HOG visual words have a limit discriminative power which is partly due to the fact that it only describes the local gradient distribution. In the meanwhile, there is still redundancy and hidden information existed in the formed histogram. Considering these respects, we propose a multi-modal SPM model which fuses global features to complement traditional local ones and conducts dimensionality reduction in local spaces for mining possible feature dependencies. Experimental results show the efficiency of the proposed method in comparison with the existing counterparts.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bosch, A., Zisserman, A., Muoz, X.: Scene classification using a hybrid generative/discriminative approach. IEEE Trans. Pattern Anal. Mach. Intell. 30(4), 712–727 (2008)
Cao, L., Ji, R., Gao, Y., Yang, Y., Tian, Q.: Weakly supervised sparse coding with geometric consistency pooling. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 3578–3585. IEEE (2012)
Chum, O., Philbin, J., Sivic, J., Isard, M., Zisserman, A.: Total recall: automaticquery expansion with a generative feature model for object retrieval. In: ICCV, pp. 1–8 (2007)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Computer Vision and Pattern Recognition. vol. 1, pp. 886–893. IEEE (2005)
Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Proc. 15(12), 3736–3745 (2006)
Fei-Fei, L., Perona, P.: A bayesian hierarchical model for learning natural scene categories. In: CVPR, vol. 2, pp. 524–531. IEEE (2005)
Gao, S., Tsang, I.W., Chia, L.T., Zhao, P.: Local features are not lonely–laplacian sparse coding for image classification. In: CVPR, pp. 3555–3561. IEEE (2010)
Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset (2007)
Jurie, F., Triggs, B.: Creating efficient codebooks for visual recognition. In: ICCV, vol. 1, pp. 604–610. IEEE (2005)
Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: CVPR, pp. 2169–2178 (2006)
Li, F.F., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. Comput. Vis. Image Underst. 106(1), 59–70 (2007)
Long, M., Ding, G., Wang, J., Sun, J., Guo, Y., Yu, P.S.: Transfer sparse coding for robust image representation. In: CVPR, pp. 407–414. IEEE (2013)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)
Manjunath, B., Ma, W.: Texture features for browsing and retrieval of image data. IEEE Trans. Pattern Anal. Mach. Intell. 18(8), 837–842 (1996)
Oliva, A., Torralba, A.: Building the gist of a scene: the role of global image features in recognition. Prog. Brain Res. 155, 23–36 (2006)
Quelhas, P., Monay, F., Odobez, J.M., Gatica-Perez, D., Tuytelaars, T., Van Gool, L.: Modeling scenes with local descriptors and latent aspects. In: ICCV, vol. 1, pp. 883–890. IEEE (2005)
Stricker, M., Orengo, M.: Similarity of color images. In: SPIE Conference on Storage and Retrieval for Image and Video Databases, vol. 2420, pp. 381–392, San Jose, USA (1995)
Wang, D., Lu, H., Chen, Y.W.: Object tracking by multi-cues spatial pyramid matching. In: ICIP, pp. 3957–3960. IEEE (2010)
Wang, M., Gao, Y., Lu, K., Rui, Y.: View-based discriminative probabilistic modeling for 3d object retrieval and recognition. IEEE Trans. Image Proc. 22(4), 1395–1407 (2013)
Wang, M., Li, W., Liu, D., Ni, B., Shen, J., Yan, S.: Facilitating image search with a scalable and compact semantic mapping. IEEE Trans. Cybern. 45(8), 1561–1574 (2015)
Wang, M., Liu, X., Wu, X.: Visual classification by l1-hypergraph modeling. IEEE Trans. Knowl. Data Eng. 27(9), 2564–2574 (2015)
Wu, J.X., Rehg, J.M.: Where am i: place instance and category recognition using spatial pact. In: CVPR, pp. 1–8. IEEE (2008)
Yang, J., Yu, K., Gong, Y., Huang, T.: Linear spatial pyramid matching using sparse coding for image classification. In: CVPR, pp. 1794–1801. IEEE (2009)
Yin, H., Cao, Y., Sun, H.: Combining pyramid representation and adaboost for urban scene classification using high-resolution synthetic aperture radar images. Radar Sonar Navig. IET 5(1), 58–64 (2011)
Yuan, X.T., Liu, X., Yan, S.: Visual classification with multitask joint sparse representation. IEEE Trans. Image Proc. 21(10), 4349–4360 (2012)
Zhao, Z.Q., Glotin, H., Xie, Z., Gao, J., Wu, X.D.: Cooperative sparse representation in two opposite directions for semi-supervised image annotation. IEEE Trans. Image Proc. 21(9), 4218–4231 (2012)
Zheng, L., Wang, S., Liu, Z., Tian, Q.: Packing and padding: coupled multi-index for accurate image retrieval. In: CVPR (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Zheng, P., Zhao, ZQ., Gao, J. (2017). A Multi-modal SPM Model for Image Classification. In: Huang, DS., Hussain, A., Han, K., Gromiha, M. (eds) Intelligent Computing Methodologies. ICIC 2017. Lecture Notes in Computer Science(), vol 10363. Springer, Cham. https://doi.org/10.1007/978-3-319-63315-2_46
Download citation
DOI: https://doi.org/10.1007/978-3-319-63315-2_46
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-63314-5
Online ISBN: 978-3-319-63315-2
eBook Packages: Computer ScienceComputer Science (R0)