Abstract
The selection of a technological packages for agriculture is a complex task. Since selecting the best suited for a particular farm, given the rapid development of technology and the many combinations available, is a difficult problem for the decision maker (DM). This paper deals the selection problem of technological packages identifying criteria and alternatives in a group decision making process. The proposed model presents a multicriteria group decision model for ranking technology packages based on the outranking methods. This model is appropriate for those cases where there is great divergence among the DMs. The methodology can be used for defining rural credits (for adapted technological packages) in order to improve farmer’s competitiveness and profitability.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kahan, D.: Market-oriented farming: an overview. Food and Agriculture Organization of the United Nations (2013)
Leathers, H.D., Smale, M.: A Bayesian approach to explaining sequential adoption of components of a technological package. Am. J. Agr. Econ. 73(3), 734–742 (1991)
Kafle, B.: Determinants of adoption of improved maize varieties in developing countries: A review. Int. Res. J. Appl. Basic Sci. 1(1), 1–7 (2010)
Byerlee, D., de Polanco, E.H.: Farmers‘ stepwise adoption of technological packages: evidence from the Mexican Altiplano. Am. J. Agr. Econ. 68(3), 519 (1986). doi:10.2307/1241537
Jelassi, T., Kersten, G., Zionts, S.: An Introduction to Group Decision and Negotiation Support, pp. 537–568 (1990). doi:10.1007/978-3-642-75935-2_23
Khan, M.S., Quaddus, M.: group decision support using fuzzy cognitive maps for causal reasoning. Group Decis. Negot. 13(5), 463–480 (2004). doi:10.1023/B:GRUP.0000045748.89201.f3
Roy, B.: Multicriteria Methodology for Decision Aiding. Kluwer Academic Publishers, The Netherlands (1996)
Leyva, J.C., Fernández, E.: A new method for group decision support based on ELECTRE III methodology. Eur. J. Oper. Res. 148(1), 14–27 (2003). doi:10.1016/s0377-2217(02)00273-4
Parreiras, R.O., Ekel, P.Y., Morais, D.C.: Fuzzy set based consensus schemes for multicriteria group decision making applied to strategic planning. Group Decis. Negot. 21(2), 153–183 (2012). doi:10.1007/s10726-011-9231-0
Palomares, I., Estrella, F.J., Martínez, L., Herrera, F.: Consensus under a fuzzy context: Taxonomy, analysis framework AFRYCA and experimental case of study. Inf. Fusion 20, 252–271 (2014). doi:10.1016/j.inffus.2014.03.002
Dong, Y., Li, C.-C., Xu, Y., Gu, X.: Consensus-based group decision making under multi-granular unbalanced 2-tuple linguistic preference relations. Group Decis. Negot. 24(2), 217–242 (2015). doi:10.1007/s10726-014-9387-5
Dong, Y., Zhang, H.: Multiperson decision making with different preference representation structures: a direct consensus framework and its properties. Knowl.-Based Syst. 58, 45–57 (2014). doi:10.1016/j.knosys.2013.09.021
Zhang, B., Dong, Y., Xu, Y.: Multiple attribute consensus rules with minimum adjustments to support consensus reaching. Knowl.-Based Syst. 67, 35–48 (2014). doi:10.1016/j.knosys.2014.06.010
Herrera-Viedma, E., Herrera, F., Chiclana, F.: A consensus model for multiperson decision making with different preference structures. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 32(3), 394–402 (2002). doi:10.1109/tsmca.2002.802821
Chakhar, S., Saad, I.: Incorporating stakeholders’ knowledge in group decision-making. J Decis Syst 23(1), 113–126 (2014). doi:10.1080/12460125.2014.865828
Álvarez, Pavel A., Morais, Danielle C., Leyva, Juan C., Almeida, Adiel T.: A multi-objective genetic algorithm for inferring inter-criteria parameters for water supply consensus. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp. 218–233. Springer, Cham (2015). doi:10.1007/978-3-319-15892-1_15
Fan, M., Shen, J., Yuan, L., Jiang, R., Chen, X., Davies, W.J., Zhang, F.: Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China. Journal of experimental botany, err248 (2011)
Grose, T.K.: The next GREEN revolution. ASEE Prism 25(4), 28–31 (2015)
Aldana, U., Foltz, J.D., Barham, B.L., Useche, P.: Sequential adoption of package technologies: the dynamics of stacked trait corn adoption. Am. J. Agr. Econ. 93(1), 130–143 (2011). doi:10.1093/ajae/aaq112
Feder, G., Umali, D.L.: The adoption of agricultural innovations: a review. Technol. Forecast. Soc. Chang. 43(3), 215–239 (1993)
Leathers, H.D., Smale, M.: A Bayesian approach to explaining sequential adoption of components of a technological package. Am. J. Agr. Econ. 73(3), 734 (1991)
Marra, M., Pannell, D.J., Ghadim, A.A.: The economics of risk, uncertainty and learning in the adoption of new agricultural technologies: where are we on the learning curve? Agric. Syst. 75(2), 215–234 (2003)
Feder, G., Just, R.E., Zilberman, D.: Adoption of agricultural innovations in developing countries: a survey. Econ. Dev. Cult. Change 33(2), 255–298 (1985)
Scandizzo, P.L., Savastano, S.: The adoption and diffusion of GM crops in United States: a real option approach. (2010)
Herrera, F., Martı́nez, L., Sánchez, P.J.: Managing non-homogeneous information in group decision making. Eur. J. Oper. Res. 166(1), 115–132 (2005). doi:10.1016/j.ejor.2003.11.031
Roy, B.: The outranking approach and the foundations of ELECTRE methods. In: Bana e Costa, C.A. (ed.) Reading in Multiple Criteria Decision Aid, pp. 155–183. Springer, Berlin (1990)
Kangas, A., Kangas, J., Pykalainen, J.: Outranking methods as tools in strategic natural resources planning. Silva Fennica 35(2), 215–227 (2001). doi:10.14214/sf.597
Behzadian, M., Kazemzadeh, R.B., Albadvi, A., Aghdasi, M.: PROMETHEE: a comprehensive literature review on methodologies and applications. Eur. J. Oper. Res. 200(1), 198–215 (2010). doi:10.1016/j.ejor.2009.01.021
Macharis, C., Brans, J.P., Mareschal, B.: The GDSS PROMETHEE procedure - a PROMETHEE-GAIA based procedure for group decision support. J. Decis. Syst. 7, 283–307 (1998)
Leyva-Lopez, J.C., Aguilera-Contreras, M.A.: A multiobjective evolutionary algorithm for deriving final ranking from a fuzzy outranking relation. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 235–249. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31880-4_17
Brans, J.P., Vincke, P.: A preference ranking organization method. Manage. Sci. 31, 647–656 (1985)
Leyva López, J.C., Álvarez Carrillo, P.A., Gastélum Chavira, D.A., Solano Noriega, J.J.: A web-based group decision support system for multicriteria ranking problems. Oper. Res. Int. J., 1–36 (2016). doi:10.1007/s12351-016-0234-0
Leyva López, L., Alvarez Carrillo, P.A.: Accentuating the rank positions in an agreement index with reference to a consensus order. Int. T. Oper. Res. 22(6), 969–995 (2015). doi:10.1111/itor.12146
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Álvarez Carrillo, P.A., Leyva López, J.C., Ahumada Valenzuela, O. (2017). A Group Decision Outranking Approach for the Agricultural Technology Packages Selection Problem. In: Schoop, M., Kilgour, D. (eds) Group Decision and Negotiation. A Socio-Technical Perspective. GDN 2017. Lecture Notes in Business Information Processing, vol 293. Springer, Cham. https://doi.org/10.1007/978-3-319-63546-0_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-63546-0_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-63545-3
Online ISBN: 978-3-319-63546-0
eBook Packages: Business and ManagementBusiness and Management (R0)