Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Improving Topic Diversity in Recommendation Lists: Marginally or Proportionally?

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2017)

Abstract

Diversifying the recommendation lists in recommendation systems could potentially satisfy user’s needs. Most diversification techniques are designed to recommend the top-k relevant and diverse items, which take the coverage of the user preferences into account. The relevance scores are usually estimated by methods such as latent matrix factorization. While in this paper, we model the users’ interests with the topic distributions on the rated items. And then we investigate how to improve the topic diversification within the recommendation lists. We first estimate the topic distributions of users and items through training Latent Dirichlet Allocation (LDA) on the rating set. After that we propose two topic diversification methods based on submodular function maximization and proportionality respectively. Experimental results on MovieLens and FilmTrust datasets demonstrate that our approach outperforms state-of-the-art techniques in terms of distributional diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang, M., Hurley, N.: Avoiding monotony: improving the diversity of recommendation lists, Lausanne, Switzerland, 23–25 October 2008 (2008)

    Google Scholar 

  2. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions - I. Math. Program. 14, 265–294 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  3. Agrawal, R., Gollapudi, S., Halverson, A., Ieong, S.: Diversifying search results. In: WSDM 2009, pp. 5–14 (2009)

    Google Scholar 

  4. Carbonell, J.G., Goldstein, J.: The use of MMR, diversity-based reranking for reordering documents and producing summaries. In: SIGIR 1998, Melbourne, Australia (1998)

    Google Scholar 

  5. Kim, Y., Shim, K.: TWILITE: a recommendation system for Twitter using a probabilistic model based on latent Dirichlet allocation. Inf. Syst. 42, 59–77 (2014)

    Article  Google Scholar 

  6. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  7. Zhou, T., Kuscsik, Z., Liu, J.-G., Medo, M., Wakeling, J.R., Zhang, Y.-C.: Solving the apparent diversity-accuracy dilemma of recommender systems. In: PNAS, vol. 107 (2010)

    Google Scholar 

  8. Ziegler, C., McNee, S., Konstan, J., Lausen, G.: Improving recommendation lists through topic diversification. In: WWW, pp. 22–32 (2005)

    Google Scholar 

  9. Ashkan, A., Kveton, B., Berkovsky, S., Wen, Z.: Optimal greedy diversity for recommendation. In: IJCAI 2015, pp. 1742–1748 (2015)

    Google Scholar 

  10. Di Noia, T., Ostuni, V.C., Rosati, J., Tomeo, P., Di Sciascio, E.: An analysis of users’ propensity toward diversity in recommendations. In: RecSys 2014 (2014)

    Google Scholar 

  11. Wu, L., Liu, Q., Chen, E., Yuan, N.J., Guo, G., Xie, X.: Relevance meets coverage: a unified framework to generate diversified recommendations. ACM TIST 7, 39 (2016)

    Google Scholar 

  12. Ashkan, A., Kveton, B., Berkovsky, S., Wen, Z.: Diversified utility maximization for recommendations. In: RecSys Poster Proceedings (2014)

    Google Scholar 

  13. Koren, Y., Bell, R.: Advances in collaborative filtering. In: Recommender Systems Handbook, pp. 145–186 (2011)

    Google Scholar 

  14. Van Dang, W., Croft, B.: Diversity by proportionality: an election-based approach to search result diversification. In: SIGIR 2012, Portland, OR, USA, 12–16 August 2012 (2012)

    Google Scholar 

  15. Sha, C., Wu, X., Niu, J.: A framework for recommending relevant and diverse items. In: IJCAI 2016, New York, NY, USA, 9–15 July 2016 (2016)

    Google Scholar 

  16. Qin, L., Zhu, X.: Promoting diversity in recommendation by entropy regularizer. In: IJCAI, pp. 2698–2704 (2013)

    Google Scholar 

  17. Vargas, S., Castells, P., Vallet, D.: Explicit relevance models in intent-oriented information retrieval diversification. In: SIGIR 2012, Portland, OR, USA, 12–16 August 2012 (2012)

    Google Scholar 

  18. Santos, R.L., Macdonald, C., Ounis, I.: Exploiting query reformulations for web search result diversification. In: WWW 2010 (2010)

    Google Scholar 

  19. Barbieri, N., Manco, G.: An Analysis of Probabilistic Methods for Top-N Recommendation in Collaborative Filtering. ECML PKDD 2011

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolu Xing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Xing, X., Sha, C., Niu, J. (2017). Improving Topic Diversity in Recommendation Lists: Marginally or Proportionally?. In: Chen, L., Jensen, C., Shahabi, C., Yang, X., Lian, X. (eds) Web and Big Data. APWeb-WAIM 2017. Lecture Notes in Computer Science(), vol 10367. Springer, Cham. https://doi.org/10.1007/978-3-319-63564-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63564-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63563-7

  • Online ISBN: 978-3-319-63564-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics