Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Topic Browsing System for Research Papers Based on Hierarchical Latent Tree Analysis

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10367))

  • 1763 Accesses

Abstract

New academic papers appear rapidly in the literature nowadays. This poses a challenge for researchers who are trying to keep up with a given field, especially those who are new to a field and may not know where to start from. To address this kind of problems, we have developed a topic browsing system for research papers where the papers have been automatically categorized by a probabilistic topic model. Rather than using Latent Dirichlet Allocation (LDA) for topic modeling, we use a recently proposed method called hierarchical latent tree analysis, which has been shown to perform better than some state-of-the-art LDA-based methods. The resulting topic model contains a hierarchy of topics so that users can browse topics at different levels. The topic model contains a manageable number of general topics at the top level and allows thousands of fine-grained topics at the bottom level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Blei, D.M., Griffiths, T.L., Jordan, M.I.: The nested Chinese restaurant process and Bayesian nonparametric inference of topic hierarchies. J. ACM 57(2), 7:1–7:30 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  3. Chen, P., Zhang, N.L., Poon, L.K.M., Chen, Z.: Progressive EM for latent tree models and hierarchical topic detection. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (2016)

    Google Scholar 

  4. Chen, T., Zhang, N.L., Liu, T., Poon, K.M., Wang, Y.: Model-based multidimensional clustering of categorical data. Artif. Intell. 176, 2246–2269 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Paisley, J., Wang, C., Blei, D.M., Jordan, M.I.: Nested hierarchical Dirichlet processes. IEEE Trans. Pattern Anal. Mach. Intell. 37(2), 256–270 (2015)

    Article  Google Scholar 

Download references

Acknowledgment

The work was supported by the Education University of Hong Kong under project RG90/2014-2015R and Hong Kong Research Grants Council under grants 16202515 and 16212516.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard K. M. Poon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Poon, L.K.M., Leung, C.F., Chen, P., Zhang, N.L. (2017). Topic Browsing System for Research Papers Based on Hierarchical Latent Tree Analysis. In: Chen, L., Jensen, C., Shahabi, C., Yang, X., Lian, X. (eds) Web and Big Data. APWeb-WAIM 2017. Lecture Notes in Computer Science(), vol 10367. Springer, Cham. https://doi.org/10.1007/978-3-319-63564-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63564-4_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63563-7

  • Online ISBN: 978-3-319-63564-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics