Abstract
New academic papers appear rapidly in the literature nowadays. This poses a challenge for researchers who are trying to keep up with a given field, especially those who are new to a field and may not know where to start from. To address this kind of problems, we have developed a topic browsing system for research papers where the papers have been automatically categorized by a probabilistic topic model. Rather than using Latent Dirichlet Allocation (LDA) for topic modeling, we use a recently proposed method called hierarchical latent tree analysis, which has been shown to perform better than some state-of-the-art LDA-based methods. The resulting topic model contains a hierarchy of topics so that users can browse topics at different levels. The topic model contains a manageable number of general topics at the top level and allows thousands of fine-grained topics at the bottom level.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Blei, D.M., Griffiths, T.L., Jordan, M.I.: The nested Chinese restaurant process and Bayesian nonparametric inference of topic hierarchies. J. ACM 57(2), 7:1–7:30 (2010)
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)
Chen, P., Zhang, N.L., Poon, L.K.M., Chen, Z.: Progressive EM for latent tree models and hierarchical topic detection. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (2016)
Chen, T., Zhang, N.L., Liu, T., Poon, K.M., Wang, Y.: Model-based multidimensional clustering of categorical data. Artif. Intell. 176, 2246–2269 (2012)
Paisley, J., Wang, C., Blei, D.M., Jordan, M.I.: Nested hierarchical Dirichlet processes. IEEE Trans. Pattern Anal. Mach. Intell. 37(2), 256–270 (2015)
Acknowledgment
The work was supported by the Education University of Hong Kong under project RG90/2014-2015R and Hong Kong Research Grants Council under grants 16202515 and 16212516.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Poon, L.K.M., Leung, C.F., Chen, P., Zhang, N.L. (2017). Topic Browsing System for Research Papers Based on Hierarchical Latent Tree Analysis. In: Chen, L., Jensen, C., Shahabi, C., Yang, X., Lian, X. (eds) Web and Big Data. APWeb-WAIM 2017. Lecture Notes in Computer Science(), vol 10367. Springer, Cham. https://doi.org/10.1007/978-3-319-63564-4_32
Download citation
DOI: https://doi.org/10.1007/978-3-319-63564-4_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-63563-7
Online ISBN: 978-3-319-63564-4
eBook Packages: Computer ScienceComputer Science (R0)