Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Analysing the Impact of Storage and Load Shifting on Grey Energy Demand Reduction

  • Conference paper
  • First Online:
Smart Cities, Green Technologies, and Intelligent Transport Systems (VEHITS 2016, SMARTGREENS 2016)

Abstract

We present an analysis on the application of load shifting and storage to enhance the use and penetration of green energy while decreasing grey (non-environmentally friendly) energy demand. We use multi-agent-based simulations that are fed with real data to analyse the impact of load shifting and storage on energy consumption as well as energy prices. We show results for scenarios in which storage is placed at different locations. In this way, results suggest that up to \(15\%\) reduction in grey energy consumption is feasible during peak times. Nonetheless, if the percentage of distributed renewable resources grows to \(50\%\), higher reductions can be achieved, i.e. up to \(50\%\). Finally, an important finding suggests that distributed storage helps to keep prices for green energy low.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aghaei, J., Alizadeh, M.-I.: Demand response in smart electricity grids equipped with renewable energy sources: a review. Renew. Sustain. Energy Rev. 18, 64–72 (2013)

    Article  Google Scholar 

  2. Bosch: BPT-S 5 hybrid solar power storage (2016). http://bosch-power-tec.com/en/bpte/produkte/storage_solutions/bpt_s_5_hybrid/vs_5_hybrid. Accessed 11 July 2016

  3. Bush, S.F.: Smart Grid: Communication-Enabled Intelligence for the Electric Power Grid. IEEE Press, New York (2014)

    Book  Google Scholar 

  4. Capodieci, N., Pagani, G.A., Cabri, G., Aiello, M.: Smart meter aware domestic energy trading agents. In: Proceedings of the IEEMC 2011 Workshop on E-energy Market Challenge, pp. 1–10. ACM, New York (2011)

    Google Scholar 

  5. Gottwalt, S., Ketter, W., Block, C., Collins, J., Weinhardt, C.: Demand side management-a simulation of household behavior under variable prices. Energy Policy 39(12), 8163–8174 (2011). Clean Cooking Fuels and Technologies in Developing Economies

    Article  Google Scholar 

  6. Grid4EU: Nice grid demonstrator (2016). http://www.nicegrid.fr/. Accessed 4 Feb 2016

  7. Ilic, D., Da Silva, P.G., Karnouskos, S., Griesemer, M.: An energy market for trading electricity in smart grid neighbourhoods. In: 6th IEEE International Conference on Digital Ecosystems Technologies (DEST), pp. 1–6, June 2012

    Google Scholar 

  8. Kok, J.K., Warmer, C.J., Kamphuis, I.G: Powermatcher: multiagent control in the electricity infrastructure. In: Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS 2005, pp. 75–82. ACM, New York (2005)

    Google Scholar 

  9. Ma, H., Leung, H.-F.: An adaptive attitude bidding strategy for agents in continuous double auctions. Electron. Commer. Res. Appl. 6(4), 383–398 (2007)

    Article  Google Scholar 

  10. Mert, W., Suschek-Berger, J., Tritthart, W.: Consumer acceptance of smart appliances. Technical report, EIE Project Smart Domestic Appliances in Sustainable Energy Systems (Smart-A) (2008)

    Google Scholar 

  11. Mihaylov, M., Jurado, S., Avellana, N., Razo-Zapata, I., Van Moffaert, K., Arco, L., Bezunartea, M., Grau, I., Cañadas, A., Nowé, A.: Scanergy: a scalable and modular system for energy trading between prosumers. In: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2015, pp. 1917–1918 (2015)

    Google Scholar 

  12. Mihaylov, M., Jurado, S., Van Moffaert, K., Avellana, N., Nowé, A.: NRG-X-Change: a novel mechanism for trading of renewable energy in smart grids. In: 3rd International Conference on Smart Grids and Green IT Systems (SmartGreens) (2014)

    Google Scholar 

  13. Nakamoto, S.: BitCoin: a peer-to-peer electronic cash system (2008)

    Google Scholar 

  14. Niesten, E., Alkemade, F.: How is value created and captured in smart grids? A review of the literature and an analysis of pilot projects. Renew. Sustain. Energy Rev. 53, 629–638 (2016)

    Article  Google Scholar 

  15. North, M.J., Collier, N.T., Ozik, J., Tatara, E.R., Macal, C.M., Bragen, M., Sydelko, P.: Complex adaptive systems modeling with Repast Simphony. Complex Adapt. Syst. Model. 1(1), 1–26 (2013)

    Article  Google Scholar 

  16. Paatero, J.V., Lund, P.D.: A model for generating household electricity load profiles. Int. J. Energy Res. 30(5), 273–290 (2006)

    Article  Google Scholar 

  17. Prüggler, N.: Economic potential of demand response at household level–are central-european market conditions sufficient? Energy Policy 60, 487–498 (2013)

    Article  Google Scholar 

  18. Prüggler, N., Prüggler, W., Wirl, F.: Storage and demand side management as power generator’s strategic instruments to influence demand and prices. Energy 36(11), 6308–6317 (2011)

    Article  Google Scholar 

  19. Ramchurn, S.D., Vytelingum, P., Rogers, A., Jennings, N.R.: Putting the ‘smarts’ into the smart grid: a grand challenge for artificial intelligence. Commun. ACM 55(4), 86–97 (2012)

    Article  Google Scholar 

  20. Razo-Zapata, I.S., Mihaylov, M., Nowé, A.: Integration of load shifting and storage to reduce gray energy demand. In: Proceedings of the 5th International Conference on Smart Cities and Green ICT Systems, pp. 154–165 (2016)

    Google Scholar 

  21. Rickerson, W., Couture, T., Barbose, G.L., Jacobs, D., Parkinson, G., Chessin, E., Belden, A., Wilson, H., Barrett, H.: Residential prosumers: drivers and policy options (re-prosumers). Technical report, International Energy Agency (IEA), 06/2014 (2014)

    Google Scholar 

  22. Big Room and World Resources Institute: Global ecolabel monitor 2010: towards transparency (2010). http://www.ecolabelindex.com/downloads/Global_Ecolabel_Monitor2010.pdf. Accessed 23 Sept 2015

  23. Schuler, R.: The smart grid: a bridge between emerging technologies society and the environment. Bridge 40(1), 42–49 (2010)

    Google Scholar 

  24. Shoham, Y., Leyton-Brown, K.: Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  25. Siano, P.: Demand response and smart grids–a survey. Renew. Sustain. Energy Rev. 30, 461–478 (2014)

    Article  Google Scholar 

  26. Socomec: Socomec energy storage (2016). http://www.socomec.com/energy-storage_en.html. Accessed 11 July 2016

  27. Tesla: Powerpack (2016). https://www.teslamotors.com/powerpack. Accessed 11 July 2016

  28. Tesla: Powerwall (2016). https://www.teslamotors.com/powerwall. Accessed 11 July 2016

  29. van Werven, M.J.N., Scheepers, M.J.J.: The changing role of energy suppliers and distribution system operators in the deployment of distributed generation in liberalised electricity markets. Technical report, ECN-C-05-048, ECN (2005)

    Google Scholar 

  30. VEA: Vlaams energieagentschap - rapport 2013/2 (2014). http://www2.vlaanderen.be/economie/energiesparen/milieuvriendelijkemonitoring_evaluatie/2013/20130628Rapport2013_2-Deel2Actualisatie-OT_Bf.pdf. Accessed 23 Sept 2015

  31. Vytelingum, P., Cliff, D., Jennings, N.R.: Strategic bidding in continuous double auctions. Artif. Intell. 172(14), 1700–1729 (2008)

    Article  MATH  Google Scholar 

  32. Wang, Z., Wang, L.: Adaptive negotiation agent for facilitating bi-directional energy trading between smart building and utility grid. IEEE Trans. Smart Grid 4(2), 702–710 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This research has been funded by the European Union’s Seventh Programme for research, technological development and demonstration under the grant agreement number 324321, project SCANERGY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iván S. Razo-Zapata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Razo-Zapata, I.S., Mihaylov, M., Nowé, A. (2017). Analysing the Impact of Storage and Load Shifting on Grey Energy Demand Reduction. In: Helfert, M., Klein, C., Donnellan, B., Gusikhin, O. (eds) Smart Cities, Green Technologies, and Intelligent Transport Systems. VEHITS SMARTGREENS 2016 2016. Communications in Computer and Information Science, vol 738. Springer, Cham. https://doi.org/10.1007/978-3-319-63712-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63712-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63711-2

  • Online ISBN: 978-3-319-63712-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics