Al-Harbi R, Abdelaziz I, Kalnis P, Mamoulis N, Ebrahim Y, Sahli M (2016) Accelerating SPARQL queries by exploiting hash-based locality and adaptive partitioning. VLDB J 25(3):355–380. http://dx.doi.org/10.1007/s00778-016-0420-y
ArticleÂ
Google ScholarÂ
Aluc G, Ozsu MT, Daudjee K, Hartig O (2013) Chameleon-db: a workload-aware robust RDF data management system. Technical report CS-2013-10, University of Waterloo
Google ScholarÂ
Cheng L, Kotoulas S (2015) Scale-out processing of large RDF datasets. IEEE Trans Big Data 1(4):138–150. http://dx.doi.org/10.1109/TBDATA.2015.2505719
ArticleÂ
Google ScholarÂ
Galárraga L, Hose K, Schenkel R (2014) Partout: a distributed engine for efficient RDF processing. In: 23rd international World Wide Web conference, WWW ’14, Seoul, 7–11 Apr 2014, Companion volume, pp 267–268. http://doi.acm.org/10.1145/2567948.2577302
Gurajada S, Seufert S, Miliaraki I, Theobald M (2014) TriAD: a distributed shared-nothing RDF engine based on asynchronous message passing. In: International conference on management of data, SIGMOD 2014, Snowbird, 22–27 June 2014, pp 289–300. http://doi.acm.org/10.1145/2588555.2610511
Hammoud M, Rabbou DA, Nouri R, Beheshti S, Sakr S (2015) DREAM: distributed RDF engine with adaptive query planner and minimal communication. PVLDB 8(6):654–665. http://www.vldb.org/pvldb/vol8/p654-Hammoud.pdf
Google ScholarÂ
Harbi R, Abdelaziz I, Kalnis P, Mamoulis N (2015) Evaluating SPARQL queries on massive RDF datasets. PVLDB 8(12):1848–1851. http://www.vldb.org/pvldb/vol8/p1848-harbi.pdf
Google ScholarÂ
Hasan A, Hammoud M, Nouri R, Sakr S (2016) DREAM in action: a distributed and adaptive RDF system on the cloud. In: Proceedings of the 25th international conference on World Wide Web, WWW 2016, Montreal, 11–15 Apr 2016, Companion volume, pp 191–194. http://doi.acm.org/10.1145/2872518.2901923
Jones ND (1996) An introduction to partial evaluation. ACM Comput Surv (CSUR) 28(3):480–503
ArticleÂ
Google ScholarÂ
Neumann T, Weikum G (2008) RDF-3X: a RISC-style engine for RDF. PVLDB 1(1):647–659
Google ScholarÂ
Peng P, Zou L, Özsu MT, Chen L, Zhao D (2016) Processing SPARQL queries over distributed rdf graphs. VLDB J Int J Very Large Data Bases 25(2):243–268
ArticleÂ
Google ScholarÂ
Potter A, Motik B, Nenov Y, Horrocks I (2016) Distributed RDF query answering with dynamic data exchange. In: International semantic web conference. Springer, pp 480–497
Google ScholarÂ
Sakr S, Al-Naymat G (2010) Relational processing of rdf queries: a survey. ACM SIGMOD Rec 38(4):23–28
ArticleÂ
Google ScholarÂ
Shi J, Yao Y, Chen R, Chen H, Li F (2016) Fast and concurrent RDF queries with RDMA-based distributed graph exploration. In: 12th USENIX symposium on operating systems design and implementation (OSDI 16). USENIX Association, pp 317–332
Google ScholarÂ
Valiant LG (1990) A bridging model for parallel computation. Commun ACM 33(8):103–111
ArticleÂ
Google ScholarÂ
Wang X, Wang J, Zhang X (2016) Efficient distributed regular path queries on RDF graphs using partial evaluation. In: Proceedings of the 25th ACM international on conference on information and knowledge management. ACM, pp 1933–1936
Google ScholarÂ
Wu B, Zhou Y, Yuan P, Jin H, Liu L (2014) SemStore: a semantic-preserving distributed RDF triple store. In: CIKM, pp 509–518. http://doi.acm.org/10.1145/2661829.2661876
Google ScholarÂ
Wylot M, Cudré-Mauroux P (2016) Diplocloud: efficient and scalable management of RDF data in the cloud. IEEE Trans Knowl Data Eng 28(3):659–674. http://dx.doi.org/10.1109/TKDE.2015.2499202
ArticleÂ
Google ScholarÂ
Wylot M, Pont J, Wisniewski M, Cudré-Mauroux P (2011) dipLODocus[RDF]: short and long-tail rdf analytics for massive webs of data. In: Proceedings of the 10th international conference on the semantic web, ISWC’11 – volume Part I. Springer, Berlin/Heidelberg, pp 778–793. http://dl.acm.org/citation.cfm?id=2063016.2063066
Google ScholarÂ
Yuan P, Liu P, Wu B, Jin H, Zhang W, Liu L (2013) TripleBit: a fast and compact system for large scale RDF data. Proc VLDB Endow 6(7):517–528
ArticleÂ
Google ScholarÂ
Zhang X, Chen L, Tong Y, Wang M (2013) EAGRE: towards scalable I/O efficient SPARQL query evaluation on the cloud. In: 29th IEEE international conference on data engineering, ICDE 2013, Brisbane, 8–12 Apr 2013, pp 565–576. http://dx.doi.org/10.1109/ICDE.2013.6544856
Google ScholarÂ
Zou L, Özsu MT, Chen L, Shen X, Huang R, Zhao D (2014) gStore: a graph-based SPARQL query engine. VLDB J 23(4):565–590. http://dx.doi.org/10.1007/s00778-013-0337-7
ArticleÂ
Google ScholarÂ