Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Native Distributed RDF Systems

  • Living reference work entry
  • First Online:
Encyclopedia of Big Data Technologies
  • 438 Accesses

Synonyms

Distributed SPARQL query processing; Scalable SPARQL query processors

Definition

RDF (https://www.w3.org/RDF/), the Resource Description Framework, represents a main ingredient and data representation format for Linked Data and the Semantic Web. It supports a generic graph-based data model and data representation format for describing things, including their relationships with other things. RDF is designed to flexibly model schema-free information which represents data objects as triples in the form (S, P, O), where S represents a subject, P represents a predicate, and O represents an object. A triple indicates a relationship between S and O captured by P. Consequently, a collection of triples can be modeled as a directed graph where the graph vertices denote subjects and objects, while graph edges are used to denote predicates. The SPARQL (https://www.w3.org/TR/sparql11-overview/) query language has been recommended by the W3C as the standard language for querying RDF data....

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Al-Harbi R, Abdelaziz I, Kalnis P, Mamoulis N, Ebrahim Y, Sahli M (2016) Accelerating SPARQL queries by exploiting hash-based locality and adaptive partitioning. VLDB J 25(3):355–380. http://dx.doi.org/10.1007/s00778-016-0420-y

    Article  Google Scholar 

  • Aluc G, Ozsu MT, Daudjee K, Hartig O (2013) Chameleon-db: a workload-aware robust RDF data management system. Technical report CS-2013-10, University of Waterloo

    Google Scholar 

  • Cheng L, Kotoulas S (2015) Scale-out processing of large RDF datasets. IEEE Trans Big Data 1(4):138–150. http://dx.doi.org/10.1109/TBDATA.2015.2505719

    Article  Google Scholar 

  • Galárraga L, Hose K, Schenkel R (2014) Partout: a distributed engine for efficient RDF processing. In: 23rd international World Wide Web conference, WWW ’14, Seoul, 7–11 Apr 2014, Companion volume, pp 267–268. http://doi.acm.org/10.1145/2567948.2577302

  • Gurajada S, Seufert S, Miliaraki I, Theobald M (2014) TriAD: a distributed shared-nothing RDF engine based on asynchronous message passing. In: International conference on management of data, SIGMOD 2014, Snowbird, 22–27 June 2014, pp 289–300. http://doi.acm.org/10.1145/2588555.2610511

  • Hammoud M, Rabbou DA, Nouri R, Beheshti S, Sakr S (2015) DREAM: distributed RDF engine with adaptive query planner and minimal communication. PVLDB 8(6):654–665. http://www.vldb.org/pvldb/vol8/p654-Hammoud.pdf

    Google Scholar 

  • Harbi R, Abdelaziz I, Kalnis P, Mamoulis N (2015) Evaluating SPARQL queries on massive RDF datasets. PVLDB 8(12):1848–1851. http://www.vldb.org/pvldb/vol8/p1848-harbi.pdf

    Google Scholar 

  • Hasan A, Hammoud M, Nouri R, Sakr S (2016) DREAM in action: a distributed and adaptive RDF system on the cloud. In: Proceedings of the 25th international conference on World Wide Web, WWW 2016, Montreal, 11–15 Apr 2016, Companion volume, pp 191–194. http://doi.acm.org/10.1145/2872518.2901923

  • Jones ND (1996) An introduction to partial evaluation. ACM Comput Surv (CSUR) 28(3):480–503

    Article  Google Scholar 

  • Neumann T, Weikum G (2008) RDF-3X: a RISC-style engine for RDF. PVLDB 1(1):647–659

    Google Scholar 

  • Peng P, Zou L, Özsu MT, Chen L, Zhao D (2016) Processing SPARQL queries over distributed rdf graphs. VLDB J Int J Very Large Data Bases 25(2):243–268

    Article  Google Scholar 

  • Potter A, Motik B, Nenov Y, Horrocks I (2016) Distributed RDF query answering with dynamic data exchange. In: International semantic web conference. Springer, pp 480–497

    Google Scholar 

  • Sakr S, Al-Naymat G (2010) Relational processing of rdf queries: a survey. ACM SIGMOD Rec 38(4):23–28

    Article  Google Scholar 

  • Shi J, Yao Y, Chen R, Chen H, Li F (2016) Fast and concurrent RDF queries with RDMA-based distributed graph exploration. In: 12th USENIX symposium on operating systems design and implementation (OSDI 16). USENIX Association, pp 317–332

    Google Scholar 

  • Valiant LG (1990) A bridging model for parallel computation. Commun ACM 33(8):103–111

    Article  Google Scholar 

  • Wang X, Wang J, Zhang X (2016) Efficient distributed regular path queries on RDF graphs using partial evaluation. In: Proceedings of the 25th ACM international on conference on information and knowledge management. ACM, pp 1933–1936

    Google Scholar 

  • Wu B, Zhou Y, Yuan P, Jin H, Liu L (2014) SemStore: a semantic-preserving distributed RDF triple store. In: CIKM, pp 509–518. http://doi.acm.org/10.1145/2661829.2661876

    Google Scholar 

  • Wylot M, Cudré-Mauroux P (2016) Diplocloud: efficient and scalable management of RDF data in the cloud. IEEE Trans Knowl Data Eng 28(3):659–674. http://dx.doi.org/10.1109/TKDE.2015.2499202

    Article  Google Scholar 

  • Wylot M, Pont J, Wisniewski M, Cudré-Mauroux P (2011) dipLODocus[RDF]: short and long-tail rdf analytics for massive webs of data. In: Proceedings of the 10th international conference on the semantic web, ISWC’11 – volume Part I. Springer, Berlin/Heidelberg, pp 778–793. http://dl.acm.org/citation.cfm?id=2063016.2063066

    Google Scholar 

  • Yuan P, Liu P, Wu B, Jin H, Zhang W, Liu L (2013) TripleBit: a fast and compact system for large scale RDF data. Proc VLDB Endow 6(7):517–528

    Article  Google Scholar 

  • Zhang X, Chen L, Tong Y, Wang M (2013) EAGRE: towards scalable I/O efficient SPARQL query evaluation on the cloud. In: 29th IEEE international conference on data engineering, ICDE 2013, Brisbane, 8–12 Apr 2013, pp 565–576. http://dx.doi.org/10.1109/ICDE.2013.6544856

    Google Scholar 

  • Zou L, Özsu MT, Chen L, Shen X, Huang R, Zhao D (2014) gStore: a graph-based SPARQL query engine. VLDB J 23(4):565–590. http://dx.doi.org/10.1007/s00778-013-0337-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marcin Wylot or Sherif Sakr .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wylot, M., Sakr, S. (2018). Native Distributed RDF Systems. In: Sakr, S., Zomaya, A. (eds) Encyclopedia of Big Data Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-63962-8_226-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63962-8_226-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63962-8

  • Online ISBN: 978-3-319-63962-8

  • eBook Packages: Living Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics